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Foreword 
 
A quantitative analytical method is linear when there exists a mathematically verified straight-line 
relationship between the observed values and the true concentrations or activities of the analyte. The 
property of being linear is important for analytical and clinical laboratory methods. The linear relationship 
is valuable because it represents the simplest mathematical relationship and allows for simple and easy 
interpolation of results.  
 
It has been argued that linearity is not necessary for such methods as competitive immunoassays, because 
the relationship between the response of the system and analyte concentration is inherently nonlinear. 
However, the mathematical relationship between the response and analyte concentrations should be 
sufficiently well defined to allow the selection of a suitable transformation of the dose-response curve to 
linear form. Furthermore, for an analytical method, one cannot interpolate between points unless one 
knows the results are linear.  

The reason for ensuring linearity of analytical methods is important on clinical grounds. Clinicians know 
that the relationship between an analyte and the pathophysiologic process is usually nonlinear, but they 
expect that the results reported to them by the laboratory include a linear relationship between the result 
and the true concentration, count, or activity recovered. For example, if the true amount of an analyte in a 
sample were to double, clinicians expect that would be reflected in a doubling of the measured value. 
 
This Revision 
 
The approach outlined within the approved version of EP6 represents a significant change in statistical 
approach from the previous version.  
 
The first edition (EP6-P) used the statistical “Lack of Fit” test (LoF) as the sole basis for determining 
linearity. With this protocol, five equally spaced concentrations were analyzed with four replicates at each 
level. A regression line was fit to the points, and two variance estimates were produced – the pooled 
variance between replicates and the variance of the five means around the regression line. The ratio of 
these variances was the basis for the LoF test. One problem with this approach is that very precise 
systems have small variance between replicates, and in the ratio LoF test, very small deviations of the 
means were seen as statistically significant – or nonlinear. It was also possible – though less frequent – 
that extremely large variance between replicates could lead to a failure to detect clinically important 
nonlinearity. 
 
This polynomial method (EP6-A) is conceptually very similar to the original LoF test. In both procedures, 
there are two alternative statistical models (linear and nonlinear); and they are assessed relative to which 
is most likely to be true. However, with the polynomial approach, there is a specific parametric model for 
the nonlinear alternative, to better identify specific nonlinear conditions, and pure repeatability precision 
is included in a positive way. Better precision leads to better decisions and poor precision is screened out 
before linearity decisions are made. This approved statistical approach: 
 

• estimates the magnitude of nonlinearity at every level; 
• controls for unacceptable repeatability in the assessment of nonlinearity; 
• provides a testable statistical model; 
• can be programmed easily with widely available software. 

 
Another key concept from the previous version has been retained, i.e., the necessity to plot the data as a 
first step in the evaluation of linearity. The visual examination will help the user decide the extent to 
which the statistical assessment can be useful for determining whether there is significant nonlinearity, 
and the magnitude of the nonlinearity relative to predetermined goals.  
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A Note on Terminology 
 
NCCLS, as a global leader in standardization, is committed to achieving global harmonization wherever 
possible. Harmonization is a process of recognizing, understanding, and explaining differences while 
taking steps to achieve worldwide uniformity. NCCLS recognizes that medical conventions in the global 
metrological community have evolved differently in the United States, Europe, and elsewhere; that these 
differences are reflected in NCCLS, ISO, and CEN documents; and that legally required use of terms, 
regional usage, and different consensus timelines are all obstacles to harmonization. In light of this, 
NCCLS recognizes that harmonization of terms facilitates the global application of standards and is an 
area of immediate attention. Implementation of this policy is an evolutionary and educational process that 
begins with new projects and revisions of existing documents. 
 
In keeping with NCCLS's commitment to align terminology with that of ISO, the following terms are 
used in EP6: Trueness is used in this document when referring to the closeness of the agreement between 
the average value from a large series of measurements and to a true value of a measurand; Repeatability 
has replaced the term Within-run precision where appropriate, when describing the closeness of 
agreement between results of successive measurements of the same measurand carried out under the same 
conditions of measurement; Measurement procedure has replaced the term Analytical method for a set of 
operations, used in the performance of particular measurements according to a given method; Measuring 
range has replaced Reportable range when referring to a set of values of measurands for which the error 
of a measuring instrument is intended to lie within specified limits; Measurement error/Error of 
measurement is used instead of Total error to describe the result of a measurement minus a true value of 
the measurand. 
 
At this time, the working group has chosen not to replace Analyte with Measurand,( i.e., particular 
quantity subject to measurement) due to user nonfamiliarity and for the sake of the practicability of the 
guideline. 
  
Users of EP6-A should understand, however, that the fundamental meanings of the terms are very similar, 
and to facilitate understanding, the terms are defined along with explanatory notes in the guideline's 
Definitions section.  
 
All terms and definitions will be reviewed again for consistency with international use, and revised 
appropriately during the next scheduled revision of this document. 
 
Standard Precautions 
 
Because it is often impossible to know what might be infectious, all human blood specimens are to be 
treated as infectious and handled according to “standard precautions.” Standard precautions are new 
guidelines that combine the major features of “universal precautions and body substance isolation” 
practices. Standard precautions cover the transmission of any pathogen and thus are more comprehensive 
than universal precautions which are intended to apply only to transmission of blood-borne pathogens. 
Standard precaution and universal precaution guidelines are available from the U.S. Centers for Disease 
Control and Prevention (Guideline for Isolation Precautions in Hospitals. Infection Control and Hospital 
Epidemiology. CDC. 1996;Vol 17;1:53-80), (MMWR 1987;36[suppl 2S]2S-18S), and (MMWR 
1988;37:377-382, 387-388). For specific precautions for preventing the laboratory transmission of blood-
borne infection from laboratory instruments and materials and for recommendations for the management 
of blood-borne exposure, refer to the most current edition of NCCLS document M29—Protection of 
Laboratory Workers from Occupationally Acquired Infections. 
 
Key Words 
 
Allowable difference, allowable error, linearity, matrix effects, measurement error, total error, uncertainty
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Evaluation of the Linearity of Quantitative Measurement Procedures:  A 
Statistical Approach; Approved Guideline 

 
1 Scope  
 
This document presents a method to establish, verify and/or demonstrate the linear range of a quantitative 
measurement procedure. These methods do not identify the causes of significant nonlinearity. The method 
employs increasing numbers of samples for more definitive examinations of linearity. Therefore, if a 
failed demonstration is evaluated and it is determined that the experiment needs to be repeated, it can be 
done with more replicates or with fewer levels to cover a smaller range.  
 
• This protocol is to assess linearity, isolated as much as possible from conditions of precision and 

trueness. It is understood that poor precision will hinder an effective assessment of linearity, so a 
check for poor repeatability is included. 

 
• These experiments should use samples with a matrix appropriate to the specimens being analyzed 

(serum, plasma, urine, etc.) 
 
• This protocol requires laboratories to set goals for nonlinear error. It provides basic concepts for 

setting such goals, but does not recommend any specific protocol. 
 
2 Introduction 
 
2.1 Purpose 
 
The purpose of this guideline is to describe a statistical process for determining the linearity of a 
quantitative measurement procedure. This primary objective is to determine the concentration(s) where a 
method is not linear and the extent of the nonlinearity at that level. This guideline emphasizes the 
necessity that each user establishes his or her requirements for linearity, or the allowable error due to 
nonlinearity. It also places less importance on global tests for linearity across the tested range (such as the 
LoF test). Global tests merely indicate that statistically significant nonlinearity exists; they do not show 
where that nonlinearity is, nor do they show the magnitude of the error. Linearity tests can be helpful to 
assess bias, which is a component of measurement error, but nonlinearity is not the only component of 
bias.  
 
Users should have an understanding of their needs for measurement error, bias, random error (or 
imprecision), and nonspecificity (or interferences). From these they can derive a goal for linearity. In this 
context, NCCLS document EP6-A is a part of a series of documents that guide users through the process 
of method evaluation. Also see the most recent version of NCCLS document EP21—Total Analytical 
Error for Clinical Laboratory Methods. 
 
This document is meant to cover a broad range of situations, such as establishing the linear range of a 
method, which requires testing across a wide range of concentrations, then progressively narrowing into a 
range of acceptable linearity. It is also intended to cover situations where the linear range has been 
determined elsewhere (e.g., by the manufacturer), but the user wishes to verify that range in their 
laboratory. The same procedure is used for all scenarios, but with different numbers of concentration 
levels and different numbers of replicates. 
 
 
 



Number 16 NCCLS
 

2  An NCCLS global consensus guideline. ©NCCLS.  All rights reserved.  

2.2 Alternative Approaches 
 
There are many experimental approaches used to evaluate claims of a linear range. Kroll and 
Emancipator1,2,3 proposed a method based on comparison of a linear regression equation to a series of 
polynomial equations, using the residuals (distances from each data point to the calculated regression 
line) to define linearity. The advantages of this method are that it is robust and based on rigorous 
scientific principles. Demonstration that the linear (first-order) fit is the best provides evidence that the 
method is linear. 
 
The process is not simple, because users must be able to test a variety of polynomial equations against the 
experimental data (although spreadsheet programs can be used). These procedures were further refined by 
Kroll, Praestgard, Michaliszyn, and Styer4 and implemented in the College of American Pathologists 
interlaboratory comparison programs. Krouwer and Schlain5 proposed a general method using the “last 
point off the line” (LPO) method, which requires iterative calculations of a multiple least-squares 
equation. Tholen6 proposed a graphic evaluation along with a regression lack of fit compared to a goal 
percentage; and alternatively a simple analysis of the slopes of consecutive line segments. 
 
2.3 Definitions 
 
Allowable difference/Allowable error - The magnitude of analytical deviation, from all sources, that a 
user can tolerate in a testing system and still meet the medical requirements of the test; NOTE:  The 
allowable difference (error) boundaries (for a single observation) are represented by the target value of 
the specimen plus or minus the allowable error amount. 
 
Analyte - Component indicated in the name of a measurable quantity (ISO FDIS 17511).7 
 
Analytical result - For this document, the final result of a measurement on a test specimen; NOTE: The 
result is usually in concentration or activity units; it is assumed that the measurement procedures to be 
evaluated by the procedures in this guideline are quantitative methods that yield a numerical output. 
 
Bias - The difference between the expectation of the test results and an accepted reference value;8 NOTE: 
In general, the deviation/difference is based on replicate measurement using an accepted (definitive, 
reference, or designated comparison) method and the method being tested, and expressed in the units of 
the measurement or as a percentage. 
 
Input variable - The given value that is used as a reference (independent variable) and against which the 
output variable is compared; NOTE: The input variable is represented by X with individual values of X 
noted by xi (i represents an individual observation); its value is plotted along the X-axis (abscissa).  
 
Intercept//Y intercept - 1) The point where a function intersects an axis; 2) The value of a variable, 
when the value for the other variables is zero; NOTE: The y-intercept is the value of the y-variable when 
the x-variable has a value of zero. 
 
Least squares regression - The method of statistically placing the location of the estimated line or curve 
among the data so that the sum of the squares of the distances of each data point from the line in the 
perpendicular direction from the X-axis (i.e., parallel to the Y-axis) is minimized; NOTE: It allows the 
direct algebraic computation of the coefficients and an estimate of their uncertainty. 
 
Linear equation - An equation that represents a straight line; NOTE: A linear equation is typically 
represented mathematically by: Y = a + bX; X and Y are the input and output variables, b is the slope, 
and a is the y-intercept. 
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Linear range - For this document, the range over which the testing systems results are acceptably linear; 
that is, where nonlinear error is less than the error criterion.  
 
Linearity - The ability (within a given range) to provide results that are directly proportional to the 
concentration {amount} of the analyte in the test sample; NOTES: a) Linearity typically refers to overall 
system response (i.e., the final analytical answer rather than the raw instrument output;  b) The linearity 
of a system is measured by testing levels of an analyte which are known by formulation or known relative 
to each other (not necessarily known absolutely); when the system results are plotted against these values, 
the degree to which the plotted curve conforms to a straight line is a measure of system linearity. 
 
Linear regression - A statistical calculation that results in parameters that describe the assumed linear 
relationship between values of an independent and a dependent variable wherein the independent variable 
is known exactly; NOTE: a) The calculation is based on the mathematical definition of a line (Y = a 
+bX); and the mathematical minimization of the vertical distance between each data point and the 
regression line. 
 
Measurement error//Error of measurement - The result of a measurement minus a true value (or 
accepted reference value) of the measurand;9 NOTE: a) Formerly, the term Total error, was used in this 
document. 
 
Measurement procedure - A set of operations, described specifically, used in the performance of 
particular measurements according to a given method;9 NOTE: Formerly, the term Analytical method 
was used in this document. 
 
Measuring range - A set of values of measurands for which the error of a measuring instrument is 
intended to lie within specified limits;9 NOTES: a) For this document, the range of values (in units 
appropriate for the analyte [measurand]) over which the acceptability criteria for the method have been 
met; that is, where errors due to nonlinearity, imprecision, or other sources are within defined limits; b) 
Formerly, the term Reportable range was used in this document. 
 
Output variable - The dependent variable, the value of which is compared to the input (independent) 
variable; NOTE:  The output variable is represented by Y, with individual values of Y noted by yi (i 
represents an individual observation), and its value is plotted along the Y axis  (ordinate); the mean of all 
the output variables ( yi) in the data pool is -y. 
  
Polynomial regression – A least-squared regression using polynomials of various orders: 
 
  Y = a + b1x      (first-order polynomial or linear fit) 
  Y = a + b1X + b2X2   (second-order polynomial), and  
  Y = a + b1X + b2X2 + b3X3  (third-order polynomial) 
 
Repeatability{/Repeatability of a measuring system/instrument} - The ability of a measuring 
{system/}instrument to provide closely similar indications for repeated applications of the same 
measurand under the same conditions of measurement;9  NOTES: a) These conditions include reduction 
to a minimum of the variations due to the observer; same measurement procedure; same measuring 
equipment used under the same conditions, same location; and repetition over a short period of time; b) 
Repeatability may be expressed quantitatively in terms of the dispersion characteristics of the indications. 
 
Standard deviation of y about a regression//Standard error of regression (SDy,x) - A measure of the 
dispersion of the observed values of the dependent variable Y about the estimated average value of this 
variable Ŷ over the various values of the predictor variable X. 
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Testing system - Includes the entirety of the testing process, including instrument, sample, personnel, 
reagents, supplies, and procedures; NOTE:  It also includes such attributes (method characteristics) as 
sample type, testing temperature, humidity, etc. 
 
Trueness - The closeness of agreement between the average value obtained from a large series of test 
results and an accepted reference value;8 NOTE: Trueness is usually expressed numerically by the 
statistical measure bias that is inversely related to trueness. See also Bias. 
 
2.4 Overview of the Experimental Approach 
 
This guideline uses the polynomial method originally proposed by Kroll et al.,3,4,5 because it is 
statistically rigorous and can be easily implemented by spreadsheet programs. These procedures are based 
on conventional statistical methods as described in the above documents, in basic statistical texts10,11,12 
and in conventional statistics software.  
 
The polynomial evaluation of linearity first assumes that the data set is nonlinear. This approach is 
parametric, i.e., it assumes that the data points can be described by a mathematical equation describing a 
line or curve, and that the random error is normally distributed. Whether the best-fit curve is linear or not 
does not affect the ability to interpolate between the experimental points.   
 
The basic data collection requires multiple measurements from five to nine samples with varying 
concentrations, which are known relative to one another by dilution ratios or by formulation. There is no 
requirement for the sample concentrations to be equidistant; and there is no requirement for the assumed 
values to be obtained by dilution. 

In essence, the polynomial method evaluates for nonlinearity, since polynomials are designed to fit curved 
responses. The method consists of two parts. The first part examines whether a nonlinear polynomial fits 
the data better than a linear one. The second part assesses whether the difference between the best-fitting 
nonlinear and linear polynomial is less than the amount of allowable bias for the method.  

 
3 Time Requirements 
 
3.1 Device Familiarization Period 
 
The laboratory personnel performing the analytical procedure must be familiar with the system operation, 
ensure it is in control and correctly calibrated, and that samples are prepared properly. Appropriate 
manufacturer’s training programs, when offered, are a useful part of the familiarization period. The 
instrument should be set up and operated in the laboratory long enough to ensure that the laboratory 
personnel understand the procedure necessary for proper operation. 
 
3.2 Duration of the Experiment 
 
The entire data gathering protocol should take place in as short a time interval as possible after the device 
familiarization period has been completed.  Ideally, all results for a single analyte will be obtained on the 
same day. 
 
4 Evaluating Experimental Conditions 
 
The experimental conditions required to establish the linear range may be different than protocols to 
demonstrate that the range is appropriate for a particular testing system. Establishing a range may take 
more replicates and perhaps a larger number of concentrations.  The demonstration of the linear range 
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requires a series of known concentrations or known relationships established by dilution. In all testing 
situations, the testing sequence should be random.  
 
4.1 Specimen Requirement 
 
The linear range experiment requires enough of each specimen to prepare dilutions and to carry out the 
testing for each of five (or more) concentrations. The volume can vary by setting: 
 
• Laboratories needing to demonstrate that a system’s operation is within the claimed performance 

should use 5 to 7 concentrations chosen throughout the stated linear range. Laboratories should test 2 
replicates at each level. 

 
•  Developers of new methods who are seeking to establish linear ranges (including manufacturers and 

laboratories that modify existing methods) should use 7 to 11 concentrations across the anticipated 
measuring range. Such developers may wish to use more points and a range that is 20 to 30% wider 
than the anticipated measuring range, and plan to drop off points to discover the widest possible linear 
range. Experiments should use 2 to 4 replicates at each level, depending on the expected imprecision. 
 

• Five points are the minimum number to reliably describe the linear range and use the polynomial 
method. More points will provide a more exact description of linearity and will allow a wider linear 
range, should points need to be deleted. 

 
It is recommended that equally spaced intermediate concentration levels be prepared accurately by 
proportionately mixing the high and low pools (see Sections 4.6 and 4.7), although the proposed method 
does not require equally spaced concentrations. It is acceptable to use samples especially prepared for 
specific concentrations, as long as the concentrations are known relative to each other. For the purpose of 
this evaluation, accurately pipetted mixtures of high and low pools are less likely to produce errors than 
individually weighed specimens or reconstituted solutions prepared in the laboratory. Caution should be 
exercised in pipetting small volumes. Positive displacement pipettes are useful in preparing accurate 
dilutions with small volumes. Dilution schemes for preparing samples with 5 to 11 equally spaced 
concentrations are provided in Appendix A.  
 
Commercial products intended for in vitro diagnostics may be used, providing manufacturer instructions 
are followed. These products can be used to quantitatively verify calibration, validate measuring ranges, 
and determine linearity in automated, semiautomated, and manual chemistry systems.  
 
4.2 Matrix Effects 
 
The specimens used to determine the linear range of the analytical output should be similar to the 
specimens that will be used in clinical testing. All specimens should be free of known interferences that 
the method instructions identify (such as that which may be seen with icterus, hemolysis, or lipemia). If 
this condition cannot be met, the final report should state any specimen treatment or matrix type used in 
the evaluation. Caution: Sample treatments can have different effects on adulterants than on human 
specimens and can create interferences. 
 
4.3 Hierarchy of Acceptable Matrices 
 
If multiple matrix specimen types (urine, serum, spinal fluid, whole blood, etc.) are to be assayed, a study 
should be carried out for each specimen type. For additional information, refer to the most current version 
of NCCLS document EP14— Evaluation of Matrix Effects.  
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The following is a list of possible specimen types in order of their desirability. Care should be taken by 
using the appropriate matrix for the particular method. 
 
4.3.1 Patient-Sample Pool  
 
The ideal sample matrix is a patient’s specimen pool with an analyte concentration near the expected 
upper reportable limit that is diluted with another patient's sample pool having an analyte concentration at 
the expected or tested lower limit. Note that the final concentration of the pools that are actually analyzed 
represents the tested range. Therefore, the final high and/or low pools may require adjustment to bring 
them into the desired range.  
 
4.3.2 Patient-Sample Pool Diluted With a Recommended Diluent  
 
The fluid chosen to dilute a high concentration patient-sample pool can have an effect on the test results. 
Only the diluent recommended by the manufacturer or proven acceptable by the laboratory should be 
used for dilution. For those analytical systems that allow specimen dilution for patient specimens having 
analyte concentrations above the measuring range, using the approved diluent to demonstrate linearity 
across the measuring range has the added benefit of documenting that the diluent is appropriate. Dilution 
studies should be included in the manufacturer’s establishment of performance, as appropriate.  
 
4.3.3 Patient-Sample Pool Supplemented With Analyte 
 
The supplemental material containing the analyte need not be of high purity if interfering substances are 
absent. If interfering substances are present, they should be noted (source, purity, and anticipated effect) 
in the report.  If a concentrated solution of analyte is used to supplement the pool, dilute the patient's 
sample pool as little as possible (less than 10%, as a guide), and document the solvent. 
 
4.3.4 Pool Diluted With Treated Materials of Low Concentration or Treated Pool Material  
 
If possible, use a low concentration patient-specimen pool. Alternatively, certain treatments can be used 
to reduce the analyte concentration, (e.g., dialysis, heat treatment, and chromatography). Be aware that 
these treatments may change the analyte and/or the matrix physically and/or chemically.  It is important to 
retain a constant matrix rather than achieve low levels simply by dilution. 
 
4.3.5 Commercial Control/Calibrator/Linearity Material 
 
If these materials are used, assay them as you would assay patient specimens. If appropriate admixtures 
are not provided, use the high and low samples to create intermediate concentrations. Be sure that the 
analyte is in a physiologically normal form, (e.g., protein-bound or a metabolite, if appropriate).  
 
4.3.6 Pool Diluted With Saline or Other Diluents Other Than the Recommended Diluent.  
 
When using such samples, be cautious of matrix differences that can affect the results. These dilutions 
should be kept to a minimum and documented. 
 
4.3.7 Underdiluted / Overdiluted Commercial Control Material 
 
When using such samples, be cautious of matrix differences that can affect the results: these effects can 
vary by concentration. Dilutions should be kept to a minimum and documented. Care should be taken to 
achieve complete solution. 
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4.3.8 Aqueous Solutions  
 
Human matrix effects are not tested for their effects on the response of the method when aqueous 
solutions are used. Matrix effects may influence the response of the method and the interpretation of 
results. Although materials of high purity are preferable since they minimize the possibility of 
interferences that could affect interpretation of the results, materials of lesser purity could be acceptable. 
A large number of routine clinical chemistry methods are calibrated with aqueous materials, and the 
weigh-in concentration can be accepted as the target value. 
 
4.3.9 Solution in Other Solvents  
 
Matrix effects are even more likely when organic solvents are used. 
 
4.4 Selection of Materials Used to Supplement Samples 

 
Caution should be exercised when selecting these materials. Effects can arise from the method of 
preparation for some constituents (such as using enzymes from other species).  
 
Table 1 lists suggested material sources for several analytes. The instrument or reagent manufacturer may 
also be of help in determining suitable materials. 
 

Table 1. Materials for Spiking Samples 
 
Analyte      Material     
 

Alanine aminotransferase (ALT) Purified enzyme 
Albumin    Powdered albumin, human fraction V 
Alcohol     Stock ethanol 
Alkaline phosphatase   Purified enzyme, if elevated patient sample is 

unavailable 
Aspartame aminotransferase (AST) Purified enzyme 
Amylase    Saliva or pancreatic extract 
Bilirubin    Purified bilirubin, or underdiluted elevated 

control, or standard if elevated patient sample is 
unavailable 

Cholesterol    Purified cholesterol, or underdiluted control 
Carbon dioxide (CO2)   Sodium carbonate, Sodium bicarbonate 
Creatine kinase (CK)   Purified enzyme 
Creatinine    Stock standard or elevated patient sample 
g-Glutamyl-transferase   Purified enzyme 
Hemoglobin    Human washed and lysed red cells 
Hematocrit    Microhematocrit-spun human red cells 
Lactate dehydrogenase (LDH)  Purified enzyme 
Lipase     Pancreatic extract 
Magnesium    Magnesium chloride 
Phosphorus    Potassium or sodium phosphate monobasic 
Total protein    Powdered albumin, human (preferred) or bovine 

fraction V. (A representative total protein 
material is very difficult to prepare because of 
its many constituents. If albumin is substituted 
for total protein or a nonhuman species is used, 
this fact should be noted in the experimental 
details and in the results). 

  White blood cells   Human whole blood buffy coat 
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NOTE:  The source of materials, especially proteins and enzymes, should be noted to ensure that 
differences in physical and/or chemical reactivity are documented. 
 
Solubility must be considered when using some of the recommended raw materials. Pure cholesterol, for 
example, is not readily soluble in serum or aqueous matrices. Organic solvents are required for 
dissolution. Raw-material enzyme sources must be carefully chosen to ensure that enzyme activity is 
equivalent to that of human source materials, and that additives do not affect the results. While human 
source enzymes might be the most appropriate choice, they are often expensive, if available at all. 
Albumin recovery using sources other than human albumin is often compromised, depending on the dye-
binding method used and its source of calibration material. Certified reference materials, such as 
chemicals from NIST and ACS are appropriate for many of the common analytes such as glucose, urea, 
sodium, chloride, etc.  
 
4.5 Analytical Sequence 
 
The analytical sequence should be random.13 If significant carry-over or drift is present, the experiment 
may be compromised.  
 
4.6 Analyte Range 
 
The concentration levels chosen for measurement should encompass or be equal to the minimum and the 
maximum values that are specified in the performance claims. If the linear range or measuring range 
claims do not hold for the concentrations chosen, a new analysis should be done with more appropriate 
concentrations; or if five or more analyte concentrations are analyzed, the data from the terminal pool (if 
appropriate) can be eliminated and the range appropriately shortened.  
 
When establishing the linear range, use 7 to 11 levels over a range that is 20 to 30% wider than the 
anticipated measuring range, and then plan to eliminate nonlinear points to establish the widest possible 
range of acceptable linear response. Using more levels can help justify the use of data interpolation to 
define performance over the linear range. 
 
4.7 Sample Preparation and Value Assignment 
 
If the concentration of the high and/or low pools is not known, each pool can be coded. Coding is the 
process of assigning each pool a number that conveys its relative concentration. For equally spaced 
concentrations, the coding allows assignment of whole numbers (i.e., 1, 2, 3, 4, and 5) to each consecutive 
pool. In other words, the pool concentrations do not need to be known ahead of time. To verify the limits, 
the mean of the results for the high and low pools can be used. If intermediate analyte concentrations are 
not equally spaced, the concentration interval relationship should be known and these intervals used as the 
values of X in the analysis. These analyte concentrations can also be made by preparing a midlevel 
sample from the low and high pools and preparing intermediate concentrations from the low and mid 
pools and the mid and high pools.   
 
An example of a process for five equally spaced samples is provided below. This example uses a dilution-
based scheme.  In some laboratories, a gravimetric scheme may be preferred.  Regardless of the procedure 
for preparing solutions, the preparer should use due caution.  Appendix A gives similar dilution schemes 
for 5 to 11 equally spaced samples: 
 
(1) Two pools (one high- and one low-concentration), each in an acceptable matrix (see Sections 4.2 to 
4.4), are obtained in volumes sufficient for the entire experiment. The required volume of each pool will 
depend on the assay volume requirement. Care should be taken to use the most accurate and precise 
pipetting technique available. The following pool designations are based on equally spaced 
concentrations. 
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(2) The low-concentration pool (ideally near and within the lower limit) is coded Pool No. 1; the high-
concentration pool (the highest concentration tested) is coded Pool No. 5. 
 
(3) The intermediate concentration pools are made by dilutions that will be related to each other and the 
high and low pools by constant intervals. A convenient method for making the intermediate pools is as 
follows: 
   
Pool 2 is a mixture of three parts of the low pool (No. 1) and one part of the high pool (No. 5). 
 
Pool 3 is a mixture of two parts of the low pool (No. 1) and two parts of the high pool (No. 5). 
   
Pool 4 is a mixture of one part of the low pool (No. 1) and three parts of the high pool (No. 5). 
 
The concentration of each pool is defined by the following formula, in which concentration of Pool No. 1 
is C1 and the volume part of Pool No. 1 is V1; likewise, the concentration of Pool No. 5 is C5 and the 
volume part of Pool No. 5 is V5: 
 
 Concentration = (C1•V1 + C5•V5)/(V1+V5)  
 
All concentration and volume units must be the same for each pool. Care must be taken to mix each pool 
thoroughly and to protect the pools from evaporation or other deterioration. 
 
For example, for a testing system that requires 0.05 mL per test, and n=10 per level is tested, at least 0.5 
mL plus dead volume will be needed. The high concentration pool is 120 units and the low concentration 
pool is 40 units. NOTE: The concentration does not need to be known before testing.  
 
(1)  Specimens for Pools 1 and 5, 0.6-mL aliquots are placed separately in appropriately marked sample 
tubes for assay.  

 
(2)  Pool 2 is made by adding 0.600 mL of Pool 1 to 0.200 mL of Pool 5. The resultant pool is labeled 
Pool 2. 
 
(3) Pool 3 is made by combining 0.400 mL of Pool 1 and 0.400 mL of Pool 5. 
 
(4) Finally, Pool 4 is made by combining 0.200 mL of Pool 1 and 0.600 mL of Pool 5. For example, the 
expected concentration of Pool 4 is calculated as: 
 
 Pool 4 = (40 • 0.200 + 120 • 0.600)/(0.200 + 0.600) = 100 units. 
 
 The expected concentrations of the pools are 40, 60, 80, 100, and 120 units.  
 
The plotting of the analytical results can use known concentrations, the coded pool numbers (i.e., 1,2,3,4, 
and 5), or the calculated concentrations. 
 
If other concentration relationships are required, they can be used, but the concentration interval 
relationship should be known and these intervals appropriately used in the data plots. If it were required, 
for example, to have a concentration of 110 units in the above example, it could be made by combining 
0.100 mL of Pool 1 and 0.700 mL of Pool 5, and its coded pool number would be 4.5. Similar 
calculations could be used to interpolate from any set of concentrations. 
 
The examples in Appendix C demonstrate the use of coded concentrations as outlined above. 
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4.8 Data Collection 
 
Data can be conveniently listed on data worksheets in the laboratory or in computer spreadsheets. 
 
The following are the numbers of samples suggested for different purposes. 
 

• To establish the linear range:  9 to 11 levels, and 2 to 4 replicates at each level are recommended. 
 
• To validate claims for an “in-house” or modified method: 7 to 9 points, and 2 or 3 replicates at 

each level are recommended. 
 
• To confirm that the linear range is valid in a laboratory: 5 to 7 levels, and 2 replicates at each 

level are recommended. 
 
The samples should be assayed randomly during a single run or closely grouped analytical runs. Any data 
elimination will be handled as described in Sections 5.1 and 5.2. 
 
The number of replicates should be sufficient to produce a reliable estimate of the concentration at each 
level.  For some analytes, at some concentrations, that may require 3-5 replicates.   Users should use their 
best judgment about the number of replicates needed.  The procedures in this protocol are not adversely 
affected by the use of different numbers of replicates at different levels. 
 
4.9 Clinically Important Evaluation Concentrations 
 
The evaluation of the linear range should include the following important concentrations: 
• minimum analytical concentration or lower limit of the linear range; 
 
• various medical decision limits; and 
 
• maximum analytical concentration or the upper limit of the linear range. 
 
5 Demonstration of Linear Range—Data Evaluation  
 
5.1 Preliminary Data Examination 
 
The experimental results should be evaluated for general acceptability and usefulness. If the data appear 
to be unusable, refer to Section 6.3 for a discussion on setting error goals. A detailed evaluation of the 
results should use the following stepwise pattern: 
 
(1) Examine the recorded data for obvious excessive differences (errors). If an analytical or technical 
problem can be identified and corrected, the linear range can be assessed by repeating the entire set of 
specimens. 
 
(2) If analytical or technical excessive differences (errors) are not in evidence, visually examine the 
plotted data for potential outliers at each analyte concentration. This includes making a plot of the results 
with the response variable (Y) on the vertical axis and the sample concentration (or relative concentration,  
X) on the horizontal axis.  To do this, plot the individual results for each result (y) at each known or 
relative value of the sample (x); optionally, plot the mean value for each set of replicates at each level.  If 
means are plotted, connect the points either manually or with the computer program.  Observe the plot for 
gross deviations from linearity, misplaced points, obvious transcription errors, or evidence of instrument 
failures.  
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(3) If needed, arrange the data for each pool in chronological order to evaluate for drift or trends. If any 
excessive difference (error) is found, the entire run’s data should be replaced after the cause is corrected. 
Be careful not to search for “good” data by repeating the test result multiple times without correction of 
the cause. Data showing a problem may be true indications of performance. 
 
(4) Look at the differences between responses at each level.  In a linear pattern, the segment slopes will 
be approximately equal.  Any increasing or decreasing trend is an indication of nonlinearity. 
 
(5) If a response value (yi) seems too far removed from the other Y values for a given concentration, 
visually evaluate it as an outlier (Section 5.2). Any response meeting the outlier criterion should be 
eliminated from the data set. 
 
(6) Two or more unexplained outliers casts doubt on the testing system’s performance. Conduct 
troubleshooting procedures, which may include contacting the manufacturer for assistance if these 
outliers are unexplained. 
 
(7) A visual examination of the XY plot is important for guiding the subsequent assessment of linearity. 
This will show whether there is obvious nonlinearity, or if the range of testing should be narrowed or 
expanded. It will also give insight into the most appropriate statistical procedures for the subsequent 
statistical analysis.  
 
5.2 Outlier Test 
 
In this document, “outliers” are single results that are visually and/or statistically different than other 
results, and apply only to single replicate values.  They are not multiple replicates at the same level or an 
average value at one level; that type of deviant result would be an indication of nonlinearity or other 
systematic error.  Outliers are test results that come from mistakes (clerical errors, system glitches, etc.), 
or from assumed mistakes, whether proven or reasonably assumed.  For further discussion, see ASTM E 
178-94.14 Outliers are results that do not fit the pattern represented by the rest of the data.  There are a 
number of statistical outlier tests; however the most sensitive test for outliers is the visual evaluation of 
points from a graph of results versus expected values. A single outlier in a dataset can be removed and 
does not need to be replaced.  If more than one point appears to meet the subjective evaluation criteria, 
the testing system is probably imprecise, and the values should be taken as typical operation.  In this case 
the cause should be identified and, if possible, the cause should be eliminated. 
 
5.3 Determination of the Linear Range 
 
5.3.1 Summary of Methods—The Polynomial Evaluation of Linearity 

The polynomial evaluation of linearity first assumes that the data set is not linear. This approach assumes 
that the data points fall perfectly on a line or curve in the absence of random error. Whether the best-fitted 
curve is linear or not does not affect the ability to interpolate between the experimental points.  

In essence, the polynomial method evaluates for nonlinearity: this is the reason for using polynomials. 
The method consists of two parts. The first part examines whether a nonlinear polynomial fits the data 
better than a linear one. The second part, performed in cases when a nonlinear polynomial fits the data 
better then a linear one, assesses whether the difference between the best-fitting nonlinear and linear 
polynomial is less than the amount of allowable bias for the method, which should be predefined.  
 
5.3.2 Polynomial Regression 
 
Evaluating linearity requires at least five solutions of different concentrations run at least in duplicate. 
One must know either the analyte concentration or the relationship between the solutions. The 
relationship between solutions can consist of equidistant intervals or intervals of unequal length, as long 
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as one knows the relationship between each point. For example, with five solutions having concentrations 
ranging from 20 to 100 mg/dL, the equidistant solutions would have concentrations of 40, 60, and 80 
mg/dL. Make these solutions by following the procedures in Section 4.7 and Appendix A. You can then 
use 20, 40, 60, 80, and 100 mg/dL for the x-values, or 1,2,3,4, and 5. 
 
Next, perform the polynomial regression analysis for first-, second- and third-order polynomials. This can 
be accomplished with most commercial statistical software applications. 
 
Order  Polynomial   Regression df (Rdf) 
First  xbby 10 +=     2 

Second  2
210 xbxbby ++=    3 

Third  3
3

2
210 xbxbxbby +++=   4 

 
The first order model is a straight line.  This is the equation for the best-fitting line whether the method is 
linear or not.  The second order model describes a relationship where there is a curved response, with 
either an increasing trend in the response (“curve up,” or increasing recovery at higher levels) or 
decreasing trend (“curve down,” or decreasing recovery at higher levels).  The third order model fits 
situations where the response is changing across levels; “sigmoid” or slanted “s-shaped” responses are 
fitted by this model, as are models where nonlinearity occurs at the ends of the measuring range. 
 
The regression coefficients are labeled as bi. In the second-order model, b2 is the nonlinear coefficient; in 
the third-order model, b2 and b3 are nonlinear coefficients. Obtain the standard error of the slope for each 
nonlinear coefficient, SEi (available from the regression program output).  The next step is to perform a t-
test to test whether the nonlinear coefficients are statistically significant; that is, whether the coefficient is 
significantly different than zero.  The first two coefficients (b0 and b1) are not tested because they do not 
reflect nonlinearity.  The test is calculated as follows, for b2 and b3:  

 
i

i

SE
b

t =  

Calculate the number of degrees of freedom from the formula df = L • R  - Rdf, where L is the number of 
different sample preparations or concentrations, R is the number of replicates at each preparation or 
concentration and Rdf is the number of degrees of freedom consumed by the regression analysis. Rdf is 
the number of coefficients in the regression model (including b0), as noted above.  (In the above example, 
the third-order polynomial would have L = 5, R = 2, Rdf = 4, and df = 5 • 2 - 4 = 6). Look up the critical 
value for t (two-sided at α = .05) in a t-table (Appendix B), or look up the probability of exceeding the 
observed t. If none of the nonlinear coefficients, b2 or b3, are significant (p > 0.05 for all), then the dataset 
is considered linear and the analysis is complete except for the check for high imprecision (Section 5.4). 
If any of the nonlinear coefficients, b2 in the second order model, or b2 or b3 in the third order model, are 
significant, i.e., (p < 0.05), then the dataset is nonlinear by this protocol.  It is important to note that this is 
merely a test of statistical significance, and indicates only that nonlinearity has been detected, not that it is 
large enough to affect patient results.  Proceed to Section 5.3.3, which deals with the degree of 
nonlinearity.  
 
5.3.3 Degree of Nonlinearity 
 
Pick the second or third order (nonlinear) polynomial with the best fit by examining the standard error of 
the regression (Sy.x). This statistic is a measure of the difference between the measured results and the 
model, so the model with the lowest value of Sy.x provides the best fit for the data.  
 
Calculate the deviation from linearity (DL) at each concentration as follows: 
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)()( 10 iii xbbxpDL +−=  

where the values of x range from x1…xS, and p(xi) is the value of the best-fitting polynomial at point xi.  
Therefore, DLi is the difference between the second order (quadratic) model and the first order (linear) 
model at every concentration level, or the difference between the third order (cubic) model and the linear 
model. This is a measure of the difference between the nonlinear model and the linear model, at each of 
the concentrations measured. The difference is expressed in analyte units so it can be compared with 
predefined goals.  If goals are expressed as percentages, then the DLi values can be similarly transformed 
into percentages by dividing DLi by the concentration at that value (the concentrations are xi for known 
value samples, or the average measured value if the xi are relative concentrations) and multiplying by 
100%.  The DLi are calculated only at the sample levels, not any values of the polynomials in between 
these points (even the presumed nonlinearity might be greatest at levels between the measured levels). 
 
Examine the DLi at each level and compare with the stated criteria for error at each level.  If every DLi is 
less than the criterion, then although statistically significant nonlinearity has been detected, it is not 
important since the amount of nonlinear error is within the goal.  If any DLi exceeds the criterion, there is 
a possible problem with nonlinearity at that level.  There are two approaches to this problem: 
 

(1) Try to find the reason for nonlinearity (sample preparation, interference, instrument calibration, 
etc.) and remove it.  You may wish to contact the representative for your system or instrument 
for help with this investigation. 

 
(2) Examine the graph of response vs. concentration and determine whether the nonlinearity is at 

either end of the range of concentrations or in the middle of the range. If the nonlinear 
concentration is at either end, one option is to remove the point where DLi was too large, and re-
run the statistical analysis. This will of course reduce the linear range. 

 
5.4 Considerations for Random Error   
 
The assessment of linearity so far has not considered the contribution made by random error (in this 
protocol, estimated as repeatability). Random error results from the random variability, (variability in the 
analytical system) and can lead to poor ability to detect nonlinearity. The best estimate of repeatability is 
the pooled difference between the L sets of replicates. The pooled difference between replicates is an 
overall average measure of variability that is independent of analyte level.  This is the “repeatability” of 
the method, and is noted as SDr (or CVr for proportional error).  If the estimates of SDr are reasonably 
equal across levels, then repeatability is constant across levels (constant SDr).  If the difference is much 
larger at high concentrations, then repeatability may be approximately proportional to the reference 
concentration (constant CVr).  If repeatability is proportional to the concentration, then error calculations 
should be made on percentage differences rather than absolute differences.  Repeatability can be 
calculated by analysis of variance, as the square root of the mean square for error.   
 
It can also be calculated easily by hand for two replicates using the differences between replicates, as 
follows: 

• calculate the difference between two replicates at each level; 

• square the differences between the replicates; 

• sum the squared differences; 

• divide by the number of levels (L) x 2; 

• take the square root. 
 
The formula is as follows (for two replicates and L levels): 
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ri1 and ri2 can be either the actual results of the procedure, or they can be expressed as percentages of the 
solution mean, (although the same units must be used for all levels). If percentage differences are used, 
then the result is a CVr, not SDr.. 
 
For situations with more than two replicates, the estimate of random error should come from an analysis 
of variance, which is available on most spreadsheet programs.  Following is the calculation formula: 
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where  R = number of replicates at each level (j=1,…,R); 
 L = number of levels (i =1,…,L); 
 ri = average result at level i. 
 
Compare SDr with the goal for repeatability, either as is, or expressed as a percentage of any 
concentration.  If SDr is larger than the goal, then precision may not be adequate for a reliable 
determination of linearity.  That is, the means of the replicates at each level may be too uncertain for a 
true determination of the linear relationship.  In this case, the analyst may wish to examine the instrument 
or method performance to discover the reason for imprecision, correct the problem, and then re-run the 
experiment.  If the method’s performance is consistent with past repeatability estimates, then the analyst 
could simply double the number of replicates.  This would lower the standard error of the means by about 
40%.  
 
In some cases, where repeatability is severely different across concentrations, it may be preferable to use 
weighted regression for the first-order (linear) model. The weights to be used are the inverse of the 
variance of the replicates at each level. This requires more sophisticated statistical software and perhaps 
the assistance of a statistician.  
 
The linearity protocol is illustrated in the figure below.  Each task in the flowchart has a parenthetical 
note referring to the appropriate section number in the text. 
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Design the study (2 & 3) and
goals for error (nonlinearity
and repeatability [6.3]).

Conduct measurements
according to design (4.8).

Evidence of
extreme
nonlinearity
(5.1)?

Outliers
(5.1, 5.2)?

How many
(5.1, 5.2)?

Find problem
and correct.

Remove
outlier.

Yes

Two or
moreYes

Any nonlinear
coefficents
significant
(5.3.2)?

Check
repeatability
against goal
(5.4).

No Error OK

Error
not OK

One

Yes

No

No

A

C

B
Conduct 1st-, 2nd-, and
3rd-order least-squares
regression (5.3.2).

Plot data on XY graph and
assess visually (5.1).

Stop.

Method is linear.

Figure 1.  Flowchart for EP6 Linearity Procedure (References to appropriate sections in
the text are in parenthesis.) 
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Figure 1. (Continued) 
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6 Linear Range Claims 
 
6.1 Graphical Approaches 
 
It is important that the statistical findings be compared with a graphical representation of the analytical 
results (Y) versus the concentrations (X). A simple graph shows the extent to which the results follow a 
straight line and the areas where nonlinearity is most severe. The graph can be useful for overall 
understanding and possible rejection, but not acceptance, of a linearity claim, nor determination of the 
magnitude of nonlinearity at every level. The visual plot alone is insufficient to establish or check claims. 
 
The magnitude of nonlinearity is best shown in a “Difference Plot” where the differences between the 
first- and third-order models is plotted on the vertical axis and the concentration at each point is shown on 
the horizontal axis. The allowances for error may also be added to this graph, with any percentage 
differences transposed into actual units. Examples are shown in Appendix C. 
 
6.2 Verification of Claims for Linear Range 
 
The procedures used in this guideline should help users to demonstrate that their systems meet the linear 
range claimed for the method. Manufacturers and laboratories that develop methods may establish claims 
in many different ways, including the use of procedures given in this guideline.  No matter how the claims 
are established, they can be verified with this protocol.   
 
6.3 Allowable Error and Goal Setting 
 
The laboratory must determine its own goals for measurement error for every analyte (see the current 
version of NCCLS document EP21—Total Error for Clinical Laboratory Methods).  The goals should be 
based on the needs of the clients of that laboratory and an understanding of the capabilities of the method 
as used in that laboratory.  Requirements for measurement error can be used to determine goals for the 
various sources of measurement error, such as various components of precision, trueness, and 
nonlinearity.  Various models have been proposed for determining goals for measurement error.15-23 It is 
beyond the scope of this document to recommend any procedures for setting goals.  
 
However, following are considerations for goals for linearity: 
 

• Goals for linearity should be derived from goals for bias, and should be less than or equal to those 
goals. 

 
• Goals for bias should be less than or equal to goals for measurement error. 
 

When the concentrations of the test samples are unknown, the goals for linearity should be in relative 
(percentage) units. 
 
6.4 Effects of Other Errors 
 
An unacceptable experimental outcome can be due to procedural error; instrument, reagent, or calibration 
problems; environmental incompatibility; methodological error; or matrix incompatibility, which includes 
interferences. Each of these can result in poor repeatability or large bias. The first step in determining the 
problem's source is to analyze the data and the method and try to understand the reason for the problem. It 
may be advisable to repeat the experiment, or to increase the number of concentrations (especially at 
concentrations that demonstrate unacceptable curvature, or increase the number of replicates, especially if 
excessive imprecision is apparent. If repeatability is worse than expected, there may be a reason to stop 
the experiment until a problem is identified and corrected. The committee encourages users to contact the 
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manufacturer to help resolve any problems that remain unresolved. The user may find the following 
protocols useful if unacceptable problems are found: 
 
•  Technical error such as interference (see the most current edition of NCCLS document EP7— 

Interference Testing in Clinical Chemistry). 
 
• Sample carryover and drift in test values as well as preliminary evaluation of imprecision and bias 

(see the most current edition of NCCLS document EP10— Preliminary Evaluation of Quantitative 
Clinical Laboratory Methods). 

 
•  Analytical imprecision (see the most current edition of NCCLS document EP5— Evaluation of 

Precision Performance of Clinical Chemistry Devices). 
 
•  Bias (see the most current edition of NCCLS document EP9— Method Comparison and Bias 

Estimation Using Patient Samples). 
 
Excessive unexpected errors should be evaluated to determine the usability of the method or instrument 
for this purpose. Measurement errors due to imprecision, poor trueness, carryover, and drift can affect the 
apparent linear range: these errors can result in erroneous interpretation of the data.13  
 

6.5 Assumptions 
 
The assumptions used in this protocol for the statistical evaluation of linear range  include the following:  
 
• The sample levels are known without error (actual levels known, or known relative to each other). 
 
• The linear range is tested only to the lowest and highest concentrations that demonstrate acceptable 

performance. 
 
• The linear range is evaluated for the system’s final output (concentration or activity) and not for the 

instrument signal, which may be further processed by the system. 
 
• The samples used are free from interferences that would invalidate the experiment. 
 
• The testing system's operation meets its other performance claims within the tested linear range. 
 
• Tests for the significance of the regression coefficients also assume that replicates are normally 

distributed at each level, and the variance of this distribution is constant across all levels. 
 
6.6 Guidelines for Stating a Claim for the Linear Range 
 
6.6.1 Suggested Wording of Claims 
 
Suggested wording of the claim is as follows unless the method developer provides alternative wording 
that includes the range of linearity and maximum difference.  If any claim is made for conformance with 
this linearity protocol, it must include the limits of acceptability used for assessing linearity.  Fill in the 
correct words or values for items in parentheses: 
 
For (analyte) by (method), the method has been demonstrated to be linear from (lower limit) to (upper 
limit), within (goal or measured max diff) in this interval. 
 
6.6.2 Optional Additional Information 
 
It may be useful to add the allowable difference (error) boundary at clinical decision points. If difference 
(error) limits are not stated at clinical decision points, the user can assume that the analytical difference 
(error) boundaries are proportional throughout the range. 
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Appendix A.  Dilution Schemes 
 
This appendix gives dilution schemes for samples with equally spaced concentrations. The actual 
concentrations are not important for the purposes of assessing linearity. However, the linear range will be 
defined by the highest and lowest measured concentrations where the response is linear. In all schemes, 
start with a high concentration sample and a low concentration sample whose concentrations meet or 
exceed the range of interest, and with sufficient volume to allow replicate assays of all points, when all 
samples are prepared. For example, if 0.5 mL is required for each assay, and duplicate assays are to be 
used for each of five points, then a total of 5 mL is needed, or at least 2.5 mL in each of the high and low 
concentration samples. In all dilution schemes, use fractional parts of each sample. 
 
S=5 samples 
 
1: Low (L) 
2: 0.75L+0.25H 
3: 0.50L+0.50H 
4: 0.25L+0.75H 
5: High (H) 
 
S=6 samples 
 
1: Low (L) 
2: 0.8L+0.2H 
3: 0.6L+0.4H 
4: 0.4L+0.6H 
5: 0.2L+0.8H 
6: High (H) 
 
S=7 samples 
 
1: Low (L) 
2: 0.833L+0.167H 
3: 0.667L+0.333H 
4: 0.500L+0.500H 
5: 0.333L+0.667H 
6: 0.167L+0.833H 
7: High (H) 
 
S=8 samples 
 
1: Low (L) 
2: 0.857L+0.143H 
3: 0.714L+0.286H 
4: 0.571L+0.429H 
5: 0.429L+0.571H 
6: 0.286L+0.714H 
7: 0.143L+0.857H 
8: High (H) 
 
 
 

S=9 samples 
 
1: Low (L) 
2: 0.875L+0.125H 
3: 0.750L+0.250H 
4: 0.625L+0.375H 
5: 0.500L+0.500H 
6: 0.375L+0.625H 
7: 0.250L+0.750H 
8: 0.125L+0.875H 
9: High (H) 
 
S=10 samples 
 
1: Low (L) 
2: 0.889L+0.111H 
3: 0.778L+0.222H 
4: 0.667L+0.333H 
5: 0.556L+0.444H 
6: 0.444H+0.556H 
7: 0.333L+0.667H 
8: 0.222L+0.778H 
9: 0.111L+0.889H 
10: High (H) 
 
S=11 samples 
 
1: Low (L) 
2: 0.9L+0.1H 
3: 0.8L+0.2H 
4: 0.7L+0.3H 
5: 0.6L+0.4H 
6: 0.5L+0.5H 
7: 0.4H+0.6H 
8: 0.3L+0.7H 
9: 0.2L+0.8H 
10:0.1L+0.9H 
11:High (H) 
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Appendix B.  t table 
 
Following is a limited table for the “Students t” distribution. Shown are two-sided 90, 95, and 99 
percentiles for various degrees of freedom. These values apply equally to positive and negative statistics. 
For example, the central 95th two-sided percentile value for 10 degrees of freedom is 2.228. So t statistics 
of +2.23 (or larger) and –2.23 (or smaller) are statistically significant at the α = .05 level. 
 
 
 
DF .90 .95 .99 
6 1.943 2.447 3.707 
7 1.895 2.365 3.500 
8 1.860 2.306 3.355 
9 1.833 2.262 3.250 
10 1.812 2.228 3.169 
11 1.794 2.201 3.106 
12 1.782 2.179 3.054 
13 1.771 2.160 3.012 
14 1.761 2.145 2.977 
15 1.753 2.132 2.947 
16 1.746 2.120 2.921 
17 1.740 2.110 2.898 
18 1.734 2.101 2.878 
19 1.729 2.093 2.861 
20 1.725 2.086 2.845 
21 1.721 2.080 2.831 
22 1.717 2.074 2.819 
23 1.714 2.069 2.807 
24 1.711 2.064 2.797 
25 1.708 2.060 2.787 
26 1.706 2.056 2.779 
27 1.703 2.052 2.771 
28 1.701 2.048 2.763 
29 1.699 2.045 2.756 
30 1.697 2.042 2.750 
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Appendix C. Examples 
 
Example 1.  IgM 
 
A laboratory prepares five equally spaced concentrations for duplicate analysis of IgM. Assume the 
laboratory has set default criteria of 2% for repeatability and 5% for nonlinearity. 
 
The laboratory conducts the ten analyses in random order in a single run. The results are recorded and 
they are visually reviewed for approximate linearity and agreement between replicates. This is to check 
for outliers and whether or not the results make sense. The repeatability estimate is calculated and 
compared with the goal. Regression analyses then are used to check for nonlinear response patterns. The 
differences between linear and nonlinear models are assessed, and the differences are compared with a 
preset criterion. 
 
Following are results of the linearity study: 
 

Dilution Replicate #1 Replicate #2 Mean 
1 26.5 26.2 26.35 
2 139 138 138.5 
3 269 273 271.0 
4 337 343 340.0 
5 409 404 406.5 

 
 There are no apparent outliers; but there is an indication of repeatability differences at different levels, 
with very small differences between replicates at the lower levels and larger differences at the higher 
levels. The differences between replicates are examined as follows:  

 
Dilution Mean Difference Diff 2/2 % Diff %Diff 2/2 

1 26.35 0.3 .045 1.14 .648 
2 138.5 1.0 .5 0.72 .261 
3 271.0 4.0 8 1.48 1.089 
4 341.0 6.0 18 1.76 1.548 
5 406.5 5.0 12.5 1.23 .756 

 
 
The sum of squared differences (D2/2) is 39.05, and the average of that sum is 7.81; the square root of that 
is 2.8, which is the pooled repeatability estimate. However, the differences between replicates appear to 
be proportional rather than constant, so the overall pooled difference is not valid. In the last two columns 
the percentage differences are used, which calculate a pooled difference SD of 0.9%.  
 
In reviewing the above, an estimate of 0.9% repeatability seems more reasonable than 2.8. With random 
error at SD=0.9%, analytic error will usually be less than 2%, as required by the laboratory’s default 
criteria, but it could exceed 3.6% (4SD), and so violate the error criterion. A more specific estimate of 
random error should be performed with procedures recommended in NCCLS documents EP5– Evaluation 
of Precision Performance of Clinical Chemistry Devices, or EP15– User Demonstration of Performance 
for Precision and Accuracy, where the estimates are derived at individual concentrations, in contrast to 
this one where the SD was determined across five different concentrations. 
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The following table shows the results from regression analysis. Only the regression coefficients are 
shown, along with their Standard Errors and the t statistic. The standard error of regression (Sy.x) is also 
shown, as a measure of fit. This shows that the second-order model fits much better than the first order, 
and that there is a statistically significant coefficient for the second-order term (t=5.7 exceeds the tabled 
limit of 2.365). The third-order model has the same fit, and no significant coefficients. Note that we are 
interested only in the coefficient for the nonlinear terms, not the significance of the intercept or first- 
order term. 
 
Results of Regression Analysis 
 

Order Coef. 
Symbol 

Coefficient 
Value 

Coefficient 
SE 

t-test Degrees 
freedom 

Std Error 
Regression 

       
First b0 -52.07 16.92 3.1   
First b1 96.18 5.10 18.8 8 22.8 
       
Second b0 -129.47 15.62 8.3   
Second b1 162.52 11.91 13.6   
Second b2 -11.06 1.95 5.7 (*) 7 10.3 
       
Third b0 -97.48 35.88 -2.7   
Third b1 117.58 46.91 2.5   
Third b2 6.08 17.41 0.3   
Third b3 -1.90 1.92 -1.0 6 10.3 
 
A comparison of the models shows very large differences at the low and middle concentrations, and better 
agreement at the high concentrations. These differences exceed the laboratory’s goals for error at the low, 
middle, and high concentrations, and so the method has unacceptable nonlinearity. 
 

Actual Predicted Predicted Difference % Difference 
Mean 1st-order 2nd-order 2nd-1st  
26.4 44.1 22.0 -22.1 -50.2 

138.5 140.3 151.3 11.0 7.8 
271.0 236.5 258.6 22.1 9.3 
340.0 332.7 343.7 11.0 3.3 
406.5 428.8 406.7 -22.1 -5.2 

 
Comments 
 
This case is an example where the third-order regression has no significant nonlinear terms, while the 
second-order fit has a significant coefficient for the nonlinear term. The second- and first-order models 
are shown in Figure C1, and the nonlinearity is visually apparent. 
 
Note that at four concentrations the percentage difference between first- and second-order fits exceeds the 
goal of five percent. The system is judged nonlinear and will be restudied. This is shown in Figure C2 
(Difference Plot). The largest percentage differences are at the lowest concentration, but nonlinearity 
exists throughout the range.  
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Figure C1.  IgM Linearity Study—Dilutions 1-5 
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Figure C2.  IgM Linearity Difference Plot 
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Example 2. Calcium 
 
Assume the laboratory has set error criteria of 0.20 mg/dL for repeatability and 0.20 mg/dL for 
nonlinearity. These are not percentage criteria because error for Calcium tends to be constant rather than 
proportional. As with the first example, the laboratory prepares the samples and conducts duplicate assays 
at all six levels. 
 
The results are placed in the table below and simple calculations are used to calculate the means and 
replicate differences. The pooled repeatability estimate is also determined by simple calculations.  
Regression analyses are then used to check the nonlinear models. There is a significant higher-order 
model, so the linear and nonlinear models are compared to estimate the size of the nonlinear error. 
 
Data Table 

Dilution Rep1 Rep2 Mean 
1 4.7 4.6 4.65 
2 7.8 7.6 7.70 
3 10.4 10.2 10.30 
4 13.0 13.1 13.05 
5 15.5 15.3 15.40 
6 16.3 16.1 16.20 

 
There are no apparent outliers. 
 

Dilution Mean Difference D 2/2 
1 4.65 0.1 .005 
2 7.70 0.2 .02 
3 10.30 0.2 .02 
4 13.05 0.1 .005 
5 15.40 0.2 .02 
6 16.20 0.2 .02 

 
The pooled replicate difference SD is 0.12 (repeatability), which ranges from 0.6% to 2.6%. It appears to 
be constant across the levels.  
 
The means and regression lines (first and third only) are shown in Figure C3, below. 
 



Number 16 NCCLS
 

 An NCCLS global consensus guideline. ©NCCLS.  All rights reserved. 26

Regression analysis shows that the nonlinear term in the second-order model is highly significant, but the 
third-order nonlinear coefficients are also significant (t = 2.6 and -3.8). These statistics exceed the 
criterion of 2.306 for 8 degrees of freedom. The third-order model also has much lower Standard Error, 
indicating a better fit than the second- or first-order models.  
  

Order Coefficient Value SE t-test Std err 
Sy.x 

Degrees 
freedom 

       
1st b0 2.86 0.44 6.5   
1st b1 2.39 0.11 21.2 .667 10 
    
2nd b0 0.82 0.40 2.1   
2nd b1 3.92 0.26 15.2   
2nd b2 -0.22 0.04 -6.0 .313 9 
    
3rd b0 2.48 0.50 4.9   
3rd b1 1.82 0.57 3.2   
3rd b2 0.48 0.18 2.6   
3rd b3 -0.07 0.02 -3.8 .197 8 
 
 
The first- and third-order models are “solved” for the coded concentrations 1-6. The differences range 
from 0.9 to 0.1, or 12% to 0.5%. Five points have differences that exceed the laboratory’s criterion for 
nonlinear error (0.20). 
 
Result Means Predicted 1st 

order 
Predicted 3rd 

order 
 

Difference 
 

% Difference 
4.65 5.25 4.71 -0.54 -11.6 
7.70 7.63 7.50 -0.13 -1.7 

10.30 10.02 10.45 0.43 4.2 
13.05 12.41 13.15 0.74 5.6 
15.40 14.80 15.22 0.42 2.7 
16.20 17.19 16.26 -0.93 -5.7 

 
It is decided to eliminate the last point. If the other five points are acceptably linear, then the method  has 
a range of around 4.5 to 15, which suits the laboratory’s needs. The revised analysis is shown below. 
 

Order Coefficient Value SE t-test Std err 
Sy.x 

Degrees 
freedom 

       
1st b0 2.16 0.15 14.3   
1st b1 2.68 0.05 59.0 .204 8 
    
2nd b0 1.54 0.19 8.2   
2nd b1 3.22 0.14 22.4   
2nd b2 -0.09 0.02 -3.8 .124 7 
    
3rd b0 1.47 0.47 3.15   
3rd b1 3.32 0.61 5.45   
3rd b2 -0.13 0.23 -0.56   
3rd b3 0.004 0.02 0.17 .134 6 
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In the revised analysis, the second-order term in the second-degree polynomial is significant (t = -3.8 
exceeds critical value of 2.365 for 7 degrees of freedom) and the nonlinear terms in the third-order model 
are not significant. The standard errors also show that the second-order model fits better than the first- or 
third-order models. Differences in predicted values between the first- and second-order models are shown 
below. None of these differences exceeds the laboratory criterion of 0.2 mg/dl, so the method is 
acceptably linear over the limited range. The reduced model is shown in Figure C3, showing the five 
points and the first- and second-order models. 
 
Result Means Predicted 

1st order 
Predicted 
2nd order 

 
Difference 

 
% Difference 

4.65 4.85 4.67 -0.18 -3.9 
7.70 7.54 7.62 0.08 1.0 

10.30 10.22 10.40 0.18 1.8 
13.05 12.90 12.99 0.09 0.7 
15.40 15.59 15.41 -0.18 -1.2 

 
Comments 
 
In this case, dropping one point and rerunning the statistical analysis shows a nonlinear response, but the 
differences are smaller than the laboratory criterion. The method is assumed to be acceptably linear over 
the reduced range. 
 
Figures C3 and C4 show the first- and third-order models, and the differences between them. Five 
differences are outside the limit of 0.2. Figures C5 and C6 show the models with the highest point 
removed, and the differences between the first- and second-order models. The differences are all within 
the goals, even though there remains visual nonlinearity. 
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Figure C3.  Calcium Linearity Study—Dilutions 1-6 
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Figure C4.  Calcium Difference Plot—Dilutions 1-6 
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Figure C5.  Calcium Linearity Study—Dilutions 1-5 
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Figure C6.  Calcium Difference Plot—Dilutions 1-5 
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Summary of Comments and Working Group Responses 
 
EP6-P2: Evaluation of the Linearity of Quantitative Analytical Methods; Proposed Guideline― Second 
Edition 
 
General 
 
1. A valuable guide and document. 
 
• The working group appreciates the comment. 
 
2. I am very concerned about the utility of this procedure. The statistical logic is not adequately explained for use by anyone 

but a statistician. I am comfortable with statistics and, as a manufacturer, use the parameters routinely; however, I did not 
find the explanations adequate for my understanding.  

 
• Linearity checks with statistical techniques require some understanding of common statistical methods.  These 

techniques are explained in common statistical texts. (See references 7-9).  In addition, the working group has 
recommended that software be provided to complement this guideline and assist with the statistical calculations. 
Also, to make the linearity assessment protocol easier to follow, a flowchart has been inserted at the end of Section 
5.4. 

 
3. The document makes several statements about statistical analysis being the only acceptable means of evaluating or 

establishing linearity. My company does neither, and we have had little or no issues with our methods of evaluation. In 
general, it is unacceptable for a guideline to be prescriptive to users about the application of any protocol. This must be 
changed. 

 
• The title of the document has been changed to Evaluation of the Linearity of Quantitative Measurement Procedures: 

A Statistical Approach; Approved Guideline: to alert the user that the protocol requires familiarity with common 
statistical methods; and to reflect that the protocol in the document is one valid, objective approach to assess 
linearity, but not the only approach.  There is abundant evidence that this particular technique is a valid procedure 
for evaluating linearity; the CAP Linearity Surveys have used a similar protocol successfully for a wide variety of 
analytes in chemistry, toxicology, hematology, and immunology, and for all common methods in these fields. 

 
4. In general, this document presents a method for calculation of linearity that is too difficult for the average laboratorian to 

perform. We are very concerned that if this document is approved, laboratories all over the U.S. will be cited by their 
inspectors for failure to perform their linearity studies following this guideline.  Specifically, the method is too statistical.  
It is not necessary for laboratories to be able to verify the linearity of their methods with such statistical accuracy.  

 
• See the responses to Comments 2 and 3. 
 
5. I have read through the document and the comments.  I agree that this not something I would want to hand to a laboratory 

technician to accomplish.  This requires sophisticated software and a lot of thought.  There are not enough explanations 
and examples. Most NCCLS protocols have worksheets for doing the analysis by hand with the aid of a calculator. This 
would require a computer, with a statistics program to calculate the cubic fit of the data. 

 
 The only suggestion I would have would be to have a procedural list that someone could refer to: 

 
1. Preparation of samples –Section 3.3 and Section ? 

 
2. Replicate guidelines – Assay variability vs. sample size. 

 
3. Etc. 

 
• For the first part of this comment, see responses to Comments 2 and 3.  For the second part, the working group 

cannot respond without further information. 
 

NCCLS consensus procedures include an appeals process that is described in detail in Section 9 of 
the Administrative Procedures. For further information, contact the Executive Offices or visit our 
website at www.nccls.org. 
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6. Users should be performing method comparison studies using native samples that incorporate sources of error.  Goals 
should be set for acceptable levels of total error.  If, after performing the method comparison, it is seen that the total error 
is too high, then the user can dig deeper into the causes of that error.  Perhaps they can then adjust their analyzer or their 
assay to achieve better precision, or less bias.  If the total error appears to increase at the ends of the reportable range, then 
the user should suspect nonlinearity, and perform linearity testing.  In this case, a simple visual graph of the results is 
sufficient to determine if nonlinearity is the cause for the increased total error.  

 
• This comment gives important considerations that should be addressed in a document on setting goals for error. 

However, the current document states that a visual assessment is suitable to determine significant nonlinearity. 
 
7. A statistical determination of linearity is almost never needed by the clinical laboratories.  Rather, it is important to know 

if clinically relevant results are being produced.  Laboratorians should ask:  “is the total error of my test within allowable 
clinical limits.” 

 
• The title has been changed to clearly indicate that this document provides a statistical approach to evaluation of 

linearity. Please refer to Section 2.1 for situations where this procedure is appropriate. 
 
8.  If the authors are intending this document to be used by manufacturers, then it is too prescriptive.  Manufacturers are free 

to determine their own methods for linearity.  My company uses various approaches, including a similar approach as 
described here.   However, our approach is somewhat simpler in that it does not require a stepwise recalculation of the 
results.  Yet, we would never expect the average laboratory to be able to repeat our study, as it too is far more statistical 
than is necessary for the lab.  Our recommendation is that this document either be: scrapped in its entirety, or clarified that 
this is an example of one method that can be used to establish linearity.  It is not the only method.  The laboratory should 
choose a method that is appropriate for their needs. 

 
• Please see the response to Comment 7. 
 
9. We have serious reservations of the utility of this guideline in its current form.  Labs should be instructed to focus on total 

error across the reportable range.  Only when total error is unacceptable, should they then be concerned with the 
components of the error.  Labs then need a very simple method to quickly assess if nonlinearity is the cause of the 
unacceptable total error. 

 
• The following bullets were added at the end of Section 6.3 to further define considerations for setting goals for 

measurement error, bias, and nonlinearity: 
 

• Goals for linearity should be derived from goals for bias, and should be less than or equal to those goals. 
 

• Goals for bias should be less than or equal to goals for measurement error. 
 

• When the concentrations of the test samples are unknown, the goals for linearity should be in relative 
(percentage) units. 

 
• Also, please see the response to Comments 98, 99, and 100.   
 
10. It is almost never necessary for labs to establish the statistical linearity of their assay.  Verification of a manufacturer’s 

linearity claim can be performed with visual inspection of the plotted results, keeping in mind the clinically allowable 
error. 

 
• See the response to Comment 7.   
 
11. The statistical approach as outlined seems very complex for the normal moderately complex lab to perform. Simplify. 

Visual evaluation is in most cases appropriate for laboratories. This document needs to allow for that method as well as 
statistical means. 

 
• See the response to Comment 7.  
 
12. This procedure is too complicated for the laboratory to perform and it is not a requirement of the regulations.  Are we 

expecting the lab to use this procedure to verify the reportable range of the instrument?  This document does not serve the 
target audience.   

 
• The title has been changed to clearly indicate that this document provides a statistical approach to evaluation of 

linearity.  If a laboratory decides to use a statistical procedure, this is the preferred approach.  
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13. In general, this document presents a method for calculation of linearity that is too difficult for the average laboratorian to 
perform.  The level of sophistication may be appropriate for a statistician’s assessment of linearity, but is well beyond the 
scope of the average laboratorian.  In addition, the statistical logic is not adequately explained for laboratory use, further 
limiting the usefulness of the guideline. 

 
• See the response to Comment 12.  
 
14. It is not necessary for laboratories to be able to verify the linearity of their methods with such statistical accuracy—visual 

evaluation of a graphical plot is often all that is necessary.  However, because the document makes several statements 
about the statistical analysis being the only acceptable means of evaluating or establishing linearity, if this document is 
approved, laboratories all over the U.S. will be cited by their inspectors for failure to perform their linearity studies 
according this guideline.  In general, it is unacceptable for a guideline to be prescriptive to users about the application of 
any protocol.  

 
• See the response to Comment 7. 
 
15. If the guideline is intended for manufacturers, it is too prescriptive for them as well.  Manufacturers use various 

approaches to determine linearity, including an approach similar to that described in the guideline.  In any case, whatever 
approach a manufacturer chooses to use, the average laboratory would never be expected to be able to repeat their studies, 
which are far more statistical than is necessary for the laboratory. 

 
• See the response to Comment 12. 
 
Title 
 
16. The document emphasizes the use of a statistical method for the evaluation of linearity as the only “acceptable” approach. 

(This claim is not acceptable, as mentioned above.) The title needs to be changed to clarify the specific tool of this 
document. Also, this protocol is meant for the clinical laboratory, as documented by the section on the preferred samples 
to use. Change title to: A Statistical Protocol for the Evaluation of the Linearity of Quantitative Analytical Methods for 
Use in Clinical Laboratories. This title is consistent with the first line of the Purpose. 

 
• Please see the response to Comment 7.  
 
Foreword 
 
17. 1st paragraph. Linearity does not have to be verified with a mathematical relationship. Our experience – and reports from 

our customers – is that visual evaluation is often all that is necessary. Delete “mathematical.” The examples support the 
acceptable use of visual assessment. 

 
• See the response to Comment 12.  
 
18. 1st paragraph. Clinical linearity should also be considered:  The assay is considered linear if the deviations are not 

clinically important. 
 
• See the responses to Comments 6 and 9.  
 
19. 2nd paragraph, 2nd sentence. Emphasize that dose-response relationship is not necessary for tests that are used for 

qualitative purposes, e.g., to determine the presence of a substance or characteristic. Otherwise, customers might ask for 
this relationship and they might expect a linear response curve. Edit sentence to: “…the dose-response curve to linear 
form if the assay is used for quantitative measurements.” 

 
• The title has been modified to clearly indicate that the statistical protocol is for quantitative methods. 
 
20. Dose-response relationship terminology is usually specific to immunoassays, so it should be changed to be more general. 
 
• This “dose-response” phrase is used only in the Foreword, and is appropriately used as an example to reflect the 

general relationship between concentration (or activity) of the analyte (or measurand) and the measured response. 
 
21. 2nd paragraph. 3rd sentence. This is false. Interpolation can take place with nonlinear relationships. Delete the last sentence. 
 
• The working group agrees that it is possible to interpolate with nonlinear relationships; however, interpolations by 

clinicians are usually performed mentally, and are made with an assumption of a linear relationship.  The sentence 
remains as written. 
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22. 7th paragraph, 2nd sentence. Syntax error; change “will” to “can be.”  
 
• The suggested change has been made.  
 
23. “This revision.” This section is not appropriate in the document itself. Suggest this be moved as a response to previous 

comments. 
 
• Due to the 20-year development of this project, the working group believes this explanation is important. 
 
24. 9th paragraph, 2nd sentence.  Mentioning there are unresolved issues, without pointing out what they are, does not serve to 

have input on the controversial points.  Comment:  "This was a serious limitation by the committee – why by the 
"committee?"  Projects are subcommittee activities.  This is a NCCLS process issue that needs to be addressed. 

 
• The "Invitation for Comment in the Consensus Process" is a standard statement included in all proposed-level 

documents. It is intended to solicit input on the current document.  This project, however, was recommended 
(according to NCCLS policy) for cancellation due an expired timeline and lack of subcommittee activity. The Area 
Committee on Evaluation Protocols accepted the project as an area committee activity and a working group was 
assigned (also according to NCCLS policy).  A draft document was prepared and circulated twice to the area 
committee and area committee advisors and observers for comment. Significant changes were made to the EP6 
draft; hence its release as a second edition proposed-level guideline. All previous subcommittee members were 
invited to participate, and many suggestions were incorporated into the current guideline. 

 
25. I wish to question the NCCLS's process for updating documents.  Please refer these comments to the appropriate person at 

NCCLS.  I was an Observer on EP6 for several years.  And thought that I had remained so after publication of the last 
version in the expectation that this would serve to keep me notified of any future changes.  Now I belatedly see that a P2 
has been prepared and I was unaware of it.  What happened to my Observer status?  I was never notified that I had lost it, 
and thus could not rely on NCCLS to keep me apprised of developments on this document. 

 
• Please see the response to Comment 24. 
 
Purpose (Section 1.1 [now Section 2.1]) 
 
26. Change the Title to match the Purpose.  
 
• The title of the document has been changed to Evaluation of the Linearity of Quantitative Analytical Methods: A 

Statistical Approach; Approved Guideline. 
 
27. The point that users need to understand and determine their own quality needs (for total error, bias, etc.) is critical to 

appropriate use of this protocol. Begin a new paragraph with this sentence: “Users should have…” to emphasize the 
importance of this message. Also, reference NCCLS document EP21—Total Analytical Error for Clinical Laboratory 
Methods. 

 
• The suggested change has been made. 
 
28. The document states that it covers a broad range of situations.  However, this protocol does not take into consideration 

whole blood testing devices, especially when the analyte is quickly metabolized, e.g., glucose. 
 
• This document does not claim to assess linearity for every measurement procedure. It is assumed the user will 

know when the procedure is appropriate. 
 
29. Users should focus on setting goals for total error across the reportable range.  It is not necessary for the user to establish 

goals for each component of error. 
 
• See the responses to Comments 5 and 8. 
 
30. Clarify why the linearity of a quantitative analytic method should be determined.  It is not clear if the linearity is a part of 

performance evaluation for a quantitative test or it is the only way to evaluate the performance. Note that a perfect straight 
line may not necessarily mean the quantitative test is accurate. For example, Y=1+2X (X = true concentration; Y = test 
result) says the test result is systematically away from the truth. It seems the linearity only does not make much sense but 
linearity with slope=1 and interception=0 does. No discussion on testing slope=1 and interception=0 was found. 

 
• This procedure is intended for assessing linearity independently, as far as possible, from other components of bias 

and random error.  The suggested procedure would be for assessing error relative to a particular model for error, 
and with a particular scheme of X-axis solutions. 
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Definitions (Section 1.3 [now Section 2.3]) 
 
31. The term “least squares regression” is odd to both statisticians and nonstatisticians. The “least square” is a mathematical 

algorithm which can be used to estimate parameters of any kind of regression model. Suggestion: delete the term from 
Section 1.3 and avoid using it throughout the entire document. 

 

• A variety of statistical “regression” procedures are possible.  This document specifies a particular, widely available 
procedure. 

Overview of the Experimental Approach (Section 1.4 [now Section 2.4]) 

32. Include solutions that are not prepared by dilution, as is “allowed” in other parts of the document. Edit: “…requirement 
that the dilution or formulation be equidistant.” 

• The end of the third paragraph has been edited to read: “… and there is no requirement that the assumed values 
are obtained by dilution.” 

33. Change “…measurements from 5 to 9 concentrations…” to “… measurements from 5 to 9 samples with varying 
concentrations…” 

• The suggested change was made. 

 
34. Change “…requirement that the dilutions be…” to “…requirement that the sample concentrations be…” 
 
• The suggested change was made. 
 
Scope (Section 1.5 [now Section 1]) 
 
35. This protocol has very little to do with ensuring that a laboratory is operating competently. Also, mentioning compliance 

with regulation is both incorrect (e.g., CLIA has no such requirement) and beyond the scope of any guideline. Delete the 
last phrase from: “…so laboratories can operate…” 

 
• The suggested change has been made.  
 
36. The comment that this protocol does not consider precision is contrary to other messages where it is stated that good 

precision enhances the utility of the protocol. Clarify for consistency. 
 
• The first bullet has been edited to read: “This protocol is to assess linearity, isolated as much as possible from 

conditions of precision and trueness.  It is understood that poor precision will hinder an effective assessment of 
linearity, therefore, a check for poor repeatability is included.” 

 
37. Remove “so laboratories can operate competently and comply with regulations.”  There is no CLIA requirement to 

perform linearity testing. 
 

• See the response to Comment 35. 
 
38. Remove “…even though linearity is useful in assessing accuracy and the estimation of linearity is affected by 

imprecision.”  Although inaccuracy may be caused by nonlinearity, linearity by itself has nothing to do with accuracy. 
 
• The working group disagrees.  The degree of nonlinearity is a continuum from negligible to unacceptably large, 

and therefore can be an important component of accuracy. However, the first bullet in Section 1 has been revised 
in response to Comment 36. 

  

39. Sample names should be used. Revise text to read: “These experiments should use samples (serum or plasma and urine) 
with matrix appropriate to the specimens being analyzed.” 

• The parenthetical note “(serum, plasma, urine, etc.)” was added to the text. 

 
40. The Scope should specify specific domains of application where a linear range is expected; for example, to determine 

the concentration of analytes in clinical biochemistry, measuring the concentration of specific antibodies to a 
particular microorganism (rubeola, hepatitis B) in enzyme immunoassays. 

 
• The technique is general and can be applied to many assays for quantitative measurements. 
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41. It is not clear for whom this procedure is intended.  It says laboratories; however, it is too complicated for the moderately 
complex labs to comply with. If this is a procedure meant for the manufacturer, it should be stated as such.  

 
• The Abstract on p. i clarifies the intended audience for the document. 
 
42. Verifying linearity is not a U.S. requirement.  If this is meant to provide a protocol to run reportable range studies, it 

should say that. Remove “and comply with regulations.” 
 
• See the response to Comment 35. 
 
Duration of the Experiment (Section 2.2 [now Section 3.2]) 
 
43. Change “…in as close a time interval” to “in as short a time interval.”   
 
• The suggested change has been made. 
 
44. As written, the text says “when” the experiment should be done, not how long it will take.  Duration infers a clarification 

of “how long.” At the end of the sentence, change the period to a comma and add the following:  “..., and should take no 
more than one working day to complete.”   

 
• The suggested change has been made, although the wording was changed to indicate that the restriction to a single 

day may not be practical for all analytes being tested. 
 
45. Remove “…after the device familiarization period has been completed.”  This statement is not necessary. 
 
• The working group believes this is an important caution. 
 
Evaluating Experimental Conditions (Section 3 [now Section 4]) 
 
46. Remove “…established by dilution.”  It is not required to prepare samples for linearity testing by dilution. 
 
• This is clarified in the first part of the sentence. 
 
Specimen Requirement (Section 3.1 [now Section 4.1]) 
 
47. Remove “including manufacturers.” Manufacturers are not in the scope of this document. 
 
• The procedures are appropriate for anyone that develops or significantly modifies laboratory test and 

measurement methods. Please see the Abstract on p. i. 
 
48. Remove the word “considered.”  You must be definitive on the minimum number of points. 
 
• The suggested change has been made. 
 
49. The statement about the minimum number of points is equivocal. Delete “considered.” 
 
• The suggested change has been made. 
 
Matrix Effects (Section 3.2 [now Section 4.2]) 
 
50. Add text: “All specimens should be free of interferences and conformity of reactivity that the method instructions identify 

(such as that which may be seen with icterus, hemolysis, or lipemia)...” 
 
• The working group disagrees; but the text has been edited to read “All specimens should be free of known 

interferences that the method instructions identify….” 
 
Hierarchy of Acceptable Matrices (Section 3.3 [now Section 4.3]) 
 
51. There is no mention of whole blood. Provide possible linearity, such as spiking whole blood with glucose solutions, or 

using appropriate commercial controls with five predefined glucose levels. 
 
• “Whole blood” has been added to the matrices mentioned within the parentheses.  The other issues are adequately 

explained in the sections that follow. 
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Pool Diluted with Treated Materials of Low Concentration or Treated Pool Material (Section 3.3.4, now 4.3.4) 
 
52. Add "Caution: In case of preparation of a low concentration, the components of matrix do not change without measuring 

analytes (such as cannot be used for dilution with buffer solution to the serum." 
 
• The working group agrees.  A fourth sentence has been added to Section 4.3.4: “It is important to retain a constant 

matrix rather than achieve low levels simply by dilution.” 
 
Aqueous Solutions (Section 3.3.8 [now  Section 4.3.8]) 
 
53. This is unclear. Edit (suggested): “Aqueous solutions are the least desirable for use with this protocol because they deviate 

the most from the matrix of the samples used in clinical laboratories.” 
 
• The working group believes the current text has appropriate cautions. 
 
54. Requiring (or strongly recommending) the use of materials of the highest quality is too restrictive. Since the protocol can 

be used without knowing the absolute concentrations of measurand, purity is not a requirement as long as there are no 
interferences that can produce apparent non-linearity, i.e., false rejection of performance. Edit: “Although materials of 
high purity are preferable since they minimize the possibility of interferences that could affect interpretation of the results, 
materials of lesser purity could be acceptable.” 

 
• The suggested change has been made. 
 
Selection of Materials Used to Supplement Samples (Section 3.4 [now Section 4.4]) 
 
55. No suggested considerations for appropriate means of producing a spiked sample of reasonable matrix. Although it 

may be obvious to try to identify a negative patient pool for the analyte, this is not always possible. Directly producing 
a sample at the upper limit of many linear ranges would require either weighing a minute amount of material or 
dissolving into a large volume of matrix. These concerns should be mentioned as requiring consideration when using 
this technique to make the high sample. Although protocols may be suggested or proffered, if the intent is not to make 
this document into a cookbook, an awareness of these considerations should be given. 

 
• It is not possible to describe all ways to make samples.  However, a sentence about retaining a constant matrix was 

added to Section 4.3.4. (See Comment 52.)   
 
56. Table 1. Is sodium carbonate really the best material for C02, rather than bicarbonate? Should both or either be suggested, 

or is there some chemical issue with the use of bicarbonate? 
 
• The working group agrees.  Sodium bicarbonate has been added to Table 1 for Carbon dioxide (CO2). 
 
57. Table 1. Any time an NCCLS document makes recommendations such as this, they become de facto standards. This table 

is prescriptive, and not even very enlightening. Mostly it lists “purified enzyme,” or “purified (analyte),” with few other 
specific recommendations. Delete Table 1.  Section 3.4 is sufficient without it, or could be made so with another sentence 
or two on material selection criteria. 

 
• The working group disagrees. Table 1 is a useful guide and the second paragraph of Section 4.4 provides guidance. 
 
Sample Preparation and Value Assignment (Section 3.7 [now Section 4.7]) 
 
58. Last paragraph.  A caution should be added.  If a piston-stroke pipette is used against serum or plasma sample, it will 

obtain an inadequate sample volume.  It is better to make the mixture by dilution with gravimetry.  Please add the 
following: “Caution: Dilutions are more accurate if prepared using gravimetry instead of using a piston-stroke pipette.” 

 
• The following has been added to the second paragraph of Section 4.7:  "This example uses a dilution-based 

scheme.  In some laboratories, a gravimetric scheme may be preferred.  Regardless of the procedure for preparing 
solutions, the preparer should use due caution." 

 
59. Although the protocol(s) for preparing equally spaced samples are straightforward, they require the use of multiple 

fixed-volume pipettes or measuring pipettes which makes the analyte value for most points dependent on the precision 
and accuracy of two pipettes per sample. For the 5-sample pattern, I use equal-volume additions in this sequence: 

 
#1: Low sample (or pool) 
#2: 1 part Low + 1 part Midpoint 
#3: Midpoint (1 part Low + 1 part High)  
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#4 1 part High + 1 part Midpoint 
#5: High sample (or pool or spiked sample) 
(The midpoint mixture must be made first, followed by #2 or #4 in arbitrary order). This allows the same fixed-volume 
pipette to be used to make each level, taking pipette accuracy out of the picture and just making the error dependent on 
pipette precision. A similar process can be done for 9-sample patterns, but keeping it straight is mind-boggling. This 
cannot be done for other patterns being recommended in the guideline. 
 

• The working group agrees that the suggested procedure would have the stated effect.  However, there are several 
ways to make solutions to use in this protocol.  Rather than try to list them all, the working group elected to 
recommend a single, unified approach for many different levels. 

 
Data Collection (Section 3.8 [now Section 4.8]) 
 

60. Section 3.8 describes the appropriate number of replicates for each evaluation purpose; these replicate numbers are 
insufficient for some test methods. Therefore, it would be helpful to have guidance within the document to help the 
laboratory select the appropriate number of replicates for the test method under evaluation. This would be based upon the 
known variance of the method at the sample concentrations under consideration. 

 
For example, replicate %CVs of <5% are common in immunoassays, and so 2-3 replicates per dilution level is 
appropriate in assessing linearity of these assays. However, in the increasingly common nucleic-acid amplified assays, 
such as PCR-based assays, the replicate %CVs are much higher, usually >20% and as high as 45%. For these assays, 2 
replicates per dilution level is insufficient to evaluate assay linearity.  

 
• The experience of the working group is that the suggested number of replicates is appropriate for most methods, 

and minimizes the number of tests.  However there are situations where more replicates are needed to provide 
reliable mean values.  The following paragraph was added to Section 4.8: “The number of replicates should be 
sufficient to produce a reliable estimate of the concentration at each level.  For some analytes, at some 
concentrations, that may require 3-5 replicates.  Users should use their best judgment about the number of 
replicates needed.  The procedures in this protocol are not adversely affected by the use of different numbers of 
replicates at different levels.”    

 
61. Bullets 1 and 2. Not clear why establishing the linear range and validating claims for “in-house” methods are different.  

Both are establishing claims. 
 
• There are a variety of purposes for which the procedure might be used, with varying needs for in-house assessment 

of modified methods.  The stated options are intended to suggest different levels of action, depending on particular 
concerns. 

 
62. The statement is prescriptive, without any justification. There is no accepted standard for the number of samples required 

for each of these objectives. Edit: “The following are the number of samples suggested for different purposes.” 
 
• The suggested change has been made. 
 
Preliminary Data Examination (Section 4.1 [now Section 5.1]) 
 
63. Add instruction for plotting the data for visual inspection after step (1). Add specific instruction, including specifics, e.g., 

if the independent variable is made from admixtures or from known or assigned concentrations, whether all results 
(dependent variable) are plotted or the mean of replicates, etc. 

 
• Additional text was added to Section 5.1 (2) to further clarify the plotting procedure. 
 
64. Visual inspection of the plot must be acceptable for confirming linearity, if so desired, just as it is used to reject linearity 

(meaning, do not bother to perform the complex statistical analysis). Change the latitude of the protocol or change the title 
and scope for this to be a statistical protocol for the evaluation of linearity. The examples support the acceptable use of 
visual assessment.  

 
• A visual assessment is useful to detect important nonlinearity, but a visual assessment may not be sufficient to 

confirm adequate linearity.  The title of the document has been changed to deal with this concern.  
 
Outlier Test (Section 4.2 [now Section 5.2]) 
 
65. Outliers can also come from assumed mistakes, e.g., intermittent air bubble.   
 
• The text has been edited to read: “Outliers are test results that reflect mistakes (clerical error, system glitches, etc.)  

whether proven or reasonably assumed.” 
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66. Add “, if possible” to the end of the paragraph. 
 
• The suggested change has been made. 
 
Polynomial Regression (Section 4.3.2 [now Section 5.3.2]) 
 
67. This section needs substantial work to make it comprehensible for the well-trained laboratory professional. There are 

many questions that need to be addressed, including definitions and what the analysis represents in meaningful words. It is 
not acceptable practice to refer users to software programs if they are not instructed about what each parameter is 
supposed to mean. This is especially critical for establishing effective acceptability criteria to compare against. 

 
• Additional text was added to this section to better explain the statistical analysis. 
 
68. This is the technical and statistical guts of the entire document.  And it has been given very short shrift.  More text was 

present on Purpose in Section 1 than here.  Needs to be expanded and made clearer for laboratory personnel who will be 
familiar with statistics, but not necessarily expert in these particular ones. Rewrite section for greater detail, instruction, 
and clarity for the nonexpert user. 

 
• Please see the response to Comment 67. 
  
69. “Obtain the Standard Error of the slope…and apply the t-test” is insufficient.  This is a nontrivial exercise and needs 

greater detail, instruction, and clarity. Rewrite section for greater detail, instruction, and clarity for the nonexpert user. 
 
• Please see the response to Comment 67.   
 
70. Explain “standard error of the slope for each nonlinear coefficient.” What if the “t-test” fails? What does it mean if b2 

passes, but b3 fails? Or vice versa? Or any other combinations? Add these terms to Definitions. Explain the importance of 
the parameter and how they can be used with the acceptance criteria that is established by the laboratory.  

 
• Please see the response to Comment 67. 
 
71. Add definitions of the statistical terms, keeping the specific context of this protocol in mind, e.g., “Rdf is the number of 

degrees of freedom consumed by…” How did Rdf become = 4 in the example? Define and illustrate: df; Rdf. 
 
• Please see the response to Comment 67.     
 
72. First paragraph.  Change “…the intervening solutions would” to “…the intervening solutions could” 
 
• The text has been changed from “…the intervening solutions would…” to “… equidistant solutions would…” 
 
73. Section 4.3.2, page 11 and Appendix B, page 18.  The text (page 11) indicates a one-sided t-table was attached (Appendix 

B).  But the Appendix B t-table apparently presented the two-sided t values. 
 
• The text was changed to state that a two-sided test is used. 
 
Degree of Nonlinearity (Section 4.3.3 [now Section 5.3.3]) 
 
74. There is no instruction on how to “pick” the polynomial. Does this mean to select the equation where b2 is the smallest? 

Rewrite for clarity for the well-trained laboratory professional. 
 
• The selection is based on the model with the lowest standard error of regression. 
 
75. The term p(xi) is not explained. Is this the measured result? If so, what should be done with the duplicate measurements? 

Take the average? Rewrite for clarity for the well-trained laboratory professional. 
 
• This term is  described as “the value of the best-fitting polynomial at point xi.” and point xi is the known or 

assigned value for that sample. 
 
76. How would this evaluation be conducted if the laboratory uses admixtures and does not know or does not estimate the 

actual concentrations of measurand? Rewrite for clarity for the well-trained laboratory professional. Also, the issue of 
appropriate limits is not trivial. Are these parameters to be compared to bias or total error? Even if bias is used, does that 
then imply that linearity is a fair judge of bias?  

 
• The document states that if the actual values are unknown, the relative concentrations are sufficient.  The 

discussion on appropriate limits was extensively revised. 
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77. DLi needs to be explained. Is the deviation to be evaluated only at the points that solutions were tested? Or should points 
be interpolated along the polynomial? If so, how many points are needed? Rewrite for clarity for the well-trained 
laboratory professional. This is a good case for why visual inspection is a very effective tool for evaluating linearity. Also, 
the examples support the acceptable use of visual assessment. (See comment for Appendix C) 

 
• The text has been revised to better explain DLi.  Please see the response to Comment 64 regarding visual 

inspection.  
 
78. This protocol is specific for systems, not just for instruments (this probably comes for the fact that the CAP Linearity 

Survey comes from the Instrumentation Resource Committee). Edit: “…contact the service representative for your system 
for help…” 

 
• The second sentence in Section 5.3.3(1) has been edited to read: “You may wish to contact the representative for 

your system or instrument for help with this investigation." 
 

79. First paragraph.  “This statistic is the average difference between…” is not true.  It is not a simple average. Suggest:  “This 
statistic is a measure of the difference….” 

• The suggested change has been made. 

80. Sy•x needs more information on how to obtain or derive this value. Rewrite section for greater detail, instruction, and 
clarity for the non-expert user. 

• The text was revised to better explain the statistical analysis, and the user can consult the basic statistical texts 
cited such as those listed in References 7-9. 

 

81. Again, needs more clarity on how to calculate DLi.  Explain what is a p(xi).  Clarity of Section 4.4 is much better than 4.2 
or 4.3 and could be used as a better, though not great, model of how to describe these calculations. 

• The text was revised to better explain the statistical procedures. See the responses to Comments 75 and 77. 

82. Second paragraph. “This is a measure of the difference between the nonlinear model and the best-fit straight line,…”  
Suggest changing to: “This is a measure of the difference between the best-fit nonlinear model and the linear model,…” 
Only one straight line is fitted and several nonlinear models were fitted per Section 4.3.2. 

• The suggested change has been made.  

Considerations for Random Error (Section 4.4 [now Section 5.4]) 

 
83. Revision for the entire section is needed.  The large part of this section is about calculating random error.  In the first 

paragraph, it's said that the random error can be calculated easily by hand, but the formula given in the same section 
cannot be used to do so for the data with 3 replicates though the calculation for both 3 and 4 replicate data are fairly easy. 
Suggestion: replace the SD formula for 2 replicate data on page 13 with the generic within-level SD formula.  In addition, 
I don't understand how to calculate the SD using the CV as suggested on page 13. 

 
• For more than two replicates, the protocol suggests using ANOVA results or other software procedures.  Since the 

procedure for two replicates is a simple adaptation, it is provided. 
 
 The sentence following the formula has been changed to:  “ri1 and ri2 can be either the actual results of the 

procedure, or they can be expressed as percentages of the solution mean (although the same units must be used for 
all levels).  If percentage differences are used, then the result is a CVr, not SDr.” 

 
84. “ri1 and ri2 can be either actual results, or expressed as percentages of the level mean (CVr)” should also note that actual 

results and percentages cannot be commingled in the same calculation.  Either one or the other must be consistently used 
in calculation of CVr. Paraphrase comment. 

 
• The text has been edited to read, “…although the same units must be used for all levels.” 
 
85. The statement “pooled differences between L” is neither defined nor explained. Edit by including in the Definitions, and 

provide clarity for the well-trained laboratory professional. 
 
• The text has been modified to better explain the estimate of pooled differences. 
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86. Although the example is for duplicates, and more replicates are “permitted,” there is inadequate discussion about what to 
do for all the inputs that are required; e.g., degrees of freedom. Modify to either explain other test designs or confine the 
protocol to duplicates. Note especially, the equation for SDr, where “only” duplicate (is that what i1 and i2 mean?) 
measurement is the example. 

 
• A formula was added to describe the calculations with more than two replicates. 
 
87. “Repeatability” is defined in international standards, so it is inappropriate to say, “often called.” I don’t see where it adds 

anything to the discussion. Edit this sentence to remove the term “repeatability.” 
 
• Terminology has been modified consistent with the NCCLS policy for an evolutionary change toward 

harmonization with international practices.  Please see the "Note on Terminology" in the Foreword.  
 
88. These sentences contain subjective instructions with no help in determining what is “reasonably equal” or is “much 

higher.” Edit with more clarification. This document needs to be understood by the first-time user. Everyone who uses it 
will be a “first-timer,” so it won’t be possible for those people to make a judgment based on their experience. 

 
• Procedures for assessing the size of the error are given elsewhere. The determination of suitability must be 

subjective, based on the needs of the user. 
 
89. Directing users to “other spreadsheets” for analysis of variance is not helpful for a standard protocol. Provide better 

instructions (and explanations) or discard the use of more replicates. 
 
• See the response to Comment 86. 
 
90. Fourth paragraph.  Clarify the term “the average could be compared…” Edit: “the average of the replicates for each of the 

solution concentrations tested…” 
 
• The term “average” referred to the average difference between replicates. The sentence has been edited to read: 

“Compare SDr with the goal for repeatability either as is, or expressed as a percentage of any concentration.” 
 
91. Why is SDr compared to the goal, and not twice or three times SDr? Explain and clarify the relationship of SDr to the goal, 

either total error or precision, and what it could mean.  
 
• The goal for precision should be compared with SDr. See the responses to Comments 98, 99, and 100. 
 
92. When variability is not constant or proportional, the user will have a difficult time making an assessment of linearity, and 

pointing out more limitations and referring to still additional software is not helpful (especially without guidance on how 
or where it can be obtained). Delete or modify so the information is helpful. 

 
• This document assumes understanding of basic concepts of linear relationships; further explanation is 

unnecessary. 
 
Graphical Approaches (Section 5.1 {now Section 6.1]) 
 
93. The statements about acceptance and rejection are beyond the authority of a guideline. An evaluation protocol cannot 

declare that visual inspection is insufficient for acceptance. Delete from “, but not acceptance,…or check claims.” The fact 
is that many manufacturers (my company included) often use visual evaluation for acceptance! And with success! 

 
• Visual assessment by experts who are familiar with possible sources of important errors, and experienced in 

spotting such errors relative to the requirements of the instrument may successfully confirm that a system is in 
control.  However, an objective assessment of linearity relative to goals for error requires an objective statistical 
analysis.   

 
94. Visual plots alone can be sufficient to check claims.  If no clinically relevant deviations are noted within the reportable 

range, then the linearity is sufficient.  This can easily be established by visual evaluation of the plot. 
 
• See the response to Comment 93. 
 
Verification of Claims for Linear Range (Section 5.2 [now Section 6.2]) 
 
95. This paragraph, and the concept behind it, is disingenuous.  NCCLS documents become de facto standards for regulatory 

and other purposes.  To say that many methods may be used to establish linearity, including this one, is technically true, 
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but begs the question that hardly anyone will now use other methods once this is published.  Alternatively, list some 
example alternative methods that would be considered equally valid.  Our challenge is to create a consensus document that 
everyone can use and live with. 1) Make EP6 as good as we can with true consensus that everyone can use and live with. 
2) List example alternative linearity tests that would be considered equally valid. 

 
• Alternatives are presented in the introductory comments and options are discussed throughout the document. 

Also, please see the responses to Comments 2 and 3. 
 
96. “Operation” usually means many or all aspects of a process. This protocol evaluates the analytical system. Edit 

“operations” to “system.” 
 
• The suggested change has been made. 
 
97. There is no justification to support the statement that the “linear claims should be based on a statistical procedure…” The 

fact is that many manufacturers (my company included) often use visual evaluation for acceptance! And with success! 
 
• The sentence has been deleted.  Please see the response to Comment 93. 
 
Allowable Error and Goal Setting Section 5.3 [now Section 6.3]) 
 
98. The document instructs the laboratory to establish goals for “allowable error due to nonlinearity.”  It also recommends that 

users “have an understanding of their needs for total error, bias, random error (or imprecision), and nonspecificity (or 
interferences).”  Although it is an interesting endeavor to establish goals for each of these components, it is not necessary.  
It really does not matter if error is due more to precision or bias or nonlinearity.  It only matters that the total error is 
within acceptable limits. 

 
• This document covers one important source of uncertainty.  Proper understanding and reduction of uncertainty 

requires breaking it into components.  See the responses to Comments 99 and 100. 
 
99. None of these references specifically address establishing goals for linearity. Further explanation is needed if they are 

included. Establishing goals for components of error (starting from Allowable Error) is not a trivial exercise. Should 
linearity goals be based on or be equivalent to bias goals? (The Ehrmeyer and Laessig article could be helpful here.) What 
parameters are to be used for goal comparison, b2 or b3 or something else? 

 
• As the document states, the references provide assistance with setting goals for the various components of 

accuracy, with different models. The working group agrees that goal setting is complex, and the following bullets 
were added at the end of Section 6.3 to further define considerations for setting goals for measurement error, bias, 
and nonlinearity: 

 
• Goals for linearity should be derived from goals for bias, and should be less than or equal to those goals. 
 
• Goals for bias should be less than or equal to goals for measurement error. 
 
• When the concentrations of the test samples are unknown, the goals for linearity should be in relative 

(percentage) units. 
 
 The stated references provide guidance on establishing goals for error and for various components of that error.  

Although goals for nonlinear error are not specifically addressed, the information in the references along with 
guidelines in this document will allow such determinations.  The issue of setting goals for various components is a 
subject for a future document. 

 
100. Remove “This should include goals for the various sources of error, such as precision, bias, and nonlinearity.”  Labs do 

not need to set separate goals for these error components.  Only total error goals are needed.  If unacceptable total error 
occurs, then they can troubleshoot the system by looking at the components. 

 
• The first sentence was edited to read ”The laboratory must determine its own goals for total acceptable error for 

every analyte.”  In the third sentence, “This should include goals for the various sources…” was replaced with 
“Requirements for measurement error can be used to determine goals for the various sources…”Also, see the 
response to Comment 99. 

 
101. May I suggest "The laboratory must determine its own goals for error [for each analyte]. The goals should be based on the 

[biovariability of the analyte in normal individuals], the needs of the clients of that laboratory and an understanding of ... 
(my additions in square brackets). 
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• The current explanation is sufficiently clear.  The bioavailability of the analyte in normal individuals is 
unnecessary. 

 
Suggested Wording of Claims (Section 5.6.1 [now Section 6.6.1]) 
 
102. Wording of claims is beyond the scope of evaluation documents. Linearity is a means of verifying the reportable range 

(which is a required element of a manufacturer’s claim in many regions of the world), so linearity might not be mentioned 
at all. In addition, there is already a proposed NCCLS document dealing with Claims. Delete. 

 
• The text states that alternative wording is possible. 
 
103. Verbiage for claims should NOT be dealt with in this document.  This is entirely too prescriptive.  A number of other 

(often conflicting) documents and regulatory agencies already deal with claims verbiage.  Don’t make the situation worse.  
It’s unnecessary.  Besides, who defines “acceptable” as in the phrase “… developer provides acceptable alternative 
wording?”  

 
• The word “acceptable” was removed and the following was added to the end of the sentence: “alternative wording 

that includes the range of linearity and maximum difference.”  
 
104. Manufacturers are not likely to report the goal or measured max difference.  This number is not relevant.  Only the total 

error is relevant, as established by method comparison. 
 
• See the response to Comment 102. 
 
105. Remove section. Manufacturers do not and cannot prescribe clinically allowable differences in their labeling. It is up to 

the manufacturer to provide truthful information regarding the test systems’ performance. Then it is up to the user to 
determine if that performance meets their needs. 

 
• See the response to Comment 102 and readers should refer to the most current version of NCCLS document 

EP11—Uniformity of Description of Claims for In Vitro Diagnostic Tests.  The suggested wording is only relevant if 
a claim is made that linearity follows this protocol; there is no need to claim clinically allowable differences — 
linearity can be claimed to the largest nonlinear difference, with no statement of clinical appropriateness. 

 
106. Laboratory professionals who refer to the available literature (much of it referenced here) understand that goals might 

change according to concentration and the use of the measurand. This reminder should be deleted. It does not provide help 
with the difficult task of establishing goals (see comments above). 

 
• A reviewer suggested this option for the user, and the working group agreed it was a useful suggestion.  Text was 

added to the end of Section 6.3 to state that relative goals (percentage) should be used in situations where the 
concentrations are not known.  

 
Dilution Schemes (Appendix A) 
 
107. A gravimetrical procedure should be included.  Add the following: 
 
Dilution scheme using gravimetry: 

S=5 samples 
1:Low(L)1.0300g 
2:0.7725L+0.2575H 
3:0.5150L+0.5150H 
4:0.2575L+0.7725H 
5:High(H)1.0300g 

 
• The working group disagrees. When preparing equally spaced solutions, the gravimetric procedure would not 

assure equal spacing.  However the gravimetric procedure can be used to prepare solutions with targeted 
concentrations rather than assumed equal spacing. 

 
108. Why do you enumerate all the possibility from S=5 to S=11 samples? If you want to save space in the article, you 

could use a generalization of the procedure that enables the people to easily go to a larger sample and only put two 
examples. Of course, if space is not an issue, please disregard this comment. 

 
• The working group believes the current approach is adequate. 
 
109. We could read the first paragraph already present on page 17 and add another paragraph saying: 
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The concentration of the low (L) and high (H) sample can be calculated with this formula: 
Let's say Increment (I) = 1/(S-1) 
For the low concentration (L) start at 1.00 and subtract I for each level more than L.  
For the high concentration (H) start at 0 and add I for each level more than L. 
Here are two examples with S=5 and S=11 samples. You can calculate the others. 
 

S=5 samples Calculated with: 
 I = 1/(S-1) = 1/(5-1) = 0.25 
 

 

1:  Low (L)  
2:  0.75L + 0.25H (1.00 – 1* I)L + (0.00 + 1* I)H 
3:  0.50L + 0.50H (1.00 – 2* I)L + (0.00 + 2* I)H 
4:  0.25L + 0.75H (1.00 – 3* I)L + (0.00 + 3* I)H 
5:  High (H)  
  
S=11 samples calculated with: 
I = 1/(S-1) = 1/(11-1) = 0.10  
  
1:   Low (L)  
2:   0.90L + 0.10H (1.00 – 1* I)L + (0.00 + 1* I)H 
3:   0.80L + 0.20H (1.00 – 2* I)L + (0.00 + 2* I)H 
4:   0.70L + 0.30H (1.00 – 3* I)L + (0.00 + 3* I)H 
5:   0.60L + 0.40H (1.00 – 4* I)L + (0.00 + 4* I)H 
6:   0.50L + 0.50H (1.00 – 5* I)L + (0.00 + 5* I)H 
7:   0.40L + 0.60H (1.00 – 6* I)L + (0.00 + 6* I)H 
8:   0.30L + 0.70H (1.00 – 7* I)L + (0.00 + 7* I)H 
9:   0.20L + 0.80H (1.00 – 8* I)L + (0.00 + 8* I)H 
10: 0.10L + 0.90H (1.00 – 9* I)L + (0.00 + 9* I)H 
11:  High (H)  
  

• This procedure is unnecessary.  With equally spaced samples, there is no need for estimate concentrations.  Users 
can use the observed concentrations. 

 
Examples (Appendix C) 
 
110. In Appendix C, Figures 1 to 6 should use different line style in their graphics so we can read them more easily. There's 

no point in using a legend when «1st» and «2nd» use the same symbols. 
 
• Figure C1 was edited for clarification. Figures C2-C6 are sufficiently clear. 
 
111. Even with the explanations and analysis of the data, it is not clear to me that this complex analysis adds anything more that 

the visual interpretation with the goals shown. More supportive instruction is needed. This adds to the argument that 
either visual or statistical analysis might serve the purpose.  

 
• Text has been added to better explain the examples.  The two examples are intended to demonstrate the protocol 

on (1) a dataset where there is obvious and significant nonlinearity; and (2) a dataset with nonlinearity that 
exceeds criteria on the full range, but meets the laboratory’s criteria on a reduced range.  These examples 
demonstrate the ability to assess nonlinearity and repeatability with objective quantitative measures that can be 
either compared with goals, or used to better understand this important component of measurement error. 

 
112. Example 1.  In the first table, the mean and slope of the 4th dilution should be 340 and 9.0, respectively.  The slope of the 

5th dilution should be 66.5." 
 
• The working group appreciates the comment. The error has been corrected. 
 
113. The method described is cumbersome and requires repeating calculations many times.  This repeated analysis can be 

eliminated by establishing the regression line to have zero bias at the mean normal result, and then looking to see where 
the maximum allowable bias occurs in both directions from the mean normal (lower and upper limits).   

 
• The suggested procedure would be useful for estimating method bias at different levels.  It would be preferred for 

testing measurement error and for investigating a particular hypothesis for nonlinearity; but it is beyond the scope 
of this document, which is to measure linearity separate from bias. 



Number 16 NCCLS
 

 An NCCLS global consensus guideline. ©NCCLS.  All rights reserved. 44

Summary of Delegate Comments and Working Group Responses 
 
EP6-A: Evaluation of the Linearity of Quantitative Measurement Procedures: A Statistical Approach; 
Approved Guideline 
 
General 
 
1. These statistical based approaches to trace blood Pb data reduction and interpretation are very useful for their intended 

purpose. I suggest that such algorithms be used for most newly created calibration curves when questions arise about 
whether or not a given calibration curve is within the so-called linear dynamic range for any atomic absorption 
spectrophotometer and possibly for any of our gas chromatographs that measure trace organics in our laboratory. I doubt, 
however, that this much computation is necessary in routine analytical work. To understand this guideline requires 
knowledge of statistics with applicability to analytical data. I am not convinced that many public health lab workers would 
be equipped to understand as well as to apply these mathematical concepts without formalized training. 

 
• The working group appreciates the comment.  Also, please refer to the responses to Comments 2 and 3 in the 

Summary of Comments and Working Group Responses. 
 
2. The procedure described in this document is too difficult and cumbersome for routine lab use. 
 
• Please see the responses to Comments 2 and 3 in the Summary of Comments and Working Group Responses. 
 
3. Statistics need to be explained more fully. Stating that perimeters are “available from the regression program output” is not 

sufficient. Descriptions should be sufficient enough so that users can set up formulas in spreadsheets. 
 
• Please see the responses to Comments 2 and 3 in the Summary of Comments and Working Group Responses. 
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NOTES 
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The Quality System Approach 
 
NCCLS subscribes to a quality system approach in the development of standards and guidelines, which facilitates 
project management; defines a document structure via a template; and provides a process to identify needed 
documents through a gap analysis. The approach is based on the model presented in the most current edition of 
NCCLS HS1—A Quality System Model for Health Care. The quality system approach applies a core set of “quality 
system essentials (QSEs),” basic to any organization, to all operations in any healthcare service’s path of workflow. 
The QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The 
quality system essentials (QSEs) are:  
 
Documents & Records Equipment  Information Management Process Improvement 
Organization Purchasing & Inventory Occurrence Management Service & Satisfaction 
Personnel Process Control Assessment Facilities & Safety 
 
EP6-A addresses the quality system essentials (QSEs) indicated by an "X." For a description of the other NCCLS 
documents listed in the grid, please refer to the Related NCCLS Publications section on the next page. 
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Related NCCLS Publications* 
 
EP5-A Evaluation of Precision Performance of Clinical Chemistry Devices; Approved Guideline (1999).  This 

document provides guidance for designing an experiment to evaluate the precision performance of clinical 
chemistry devices; recommendations for comparing the resulting precision estimates with manufacturers’ 
precision performance claims and determining when such comparisons are valid; as well as manufacturer’s 
guidelines for establishing claims. 

  
EP7-A Interference Testing in Clinical Chemistry; Approved Guideline (2002). This document provides 

background information, guidance and experimental procedures for investigating, identifying, and 
characterizing the effects of interfering substances on Clinical Chemistry test results.  

  
EP9-A2 Method Comparison and Bias Estimation Using Patient Samples; Approved Guideline – Second Edition 

(2002). This document addresses procedures for determining the bias between two clinical methods or 
devices, and for the design of a method comparison experiment using split patient samples and data analysis. 

  
EP10-A2 Preliminary Evaluation of Quantitative Clinical Laboratory Methods; Approved Guideline—Second 

Edition (2002). This guideline provides experimental design and data analysis for preliminary evaluation of 
the performance of an analytical method or device.  

  
EP14-A Evaluation of Matrix Effects; Approved Guideline (2001). This document provides guidance for evaluating 

the error or bias in analyte measurements that is due to the sample matrix (physiological or artificial) when 
two analytical methods are compared.  

  
EP15-A User Demonstration of Performance for Precision and Accuracy; Approved Guideline (2001). This 

document describes the demonstration of method precision and accuracy for laboratory analyte determinations 
utilizing a protocol designed to be completed within five working days or less. 

  
EP21-A Estimation of Total Analytical Error for Clinical Laboratory Methods; Approved Guideline (2003).  

This document provides manufacturers and end users with a means to estimate total analytical error for an 
assay. A data collection protocol and an analysis method which can be used to judge the clinical acceptability 
of new methods using patient specimens are included. These tools can also monitor an assay’s total analytical 
error by using quality control samples. 

  
M29-A2 Protection of Laboratory Workers from Occupationally Acquired Infections; Approved Guideline—

Second Edition (2001). Based on U.S. regulation, this document provides guidance on the risk of 
transmission of hepatitis viruses and human immunodeficiency viruses in any laboratory setting; specific 
precautions for preventing the laboratory transmission of blood-borne infection from laboratory instruments 
and materials; and recommendations for the management of blood-borne exposure.  

  
 

                                                      
* Proposed- and tentative-level documents are being advanced through the NCCLS consensus process; therefore, readers should 
refer to the most recent editions. 
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Blaine Healthcare Associates, Inc. 
Bristol-Myers Squibb Company 
Canadian External Quality  
  Assessment Laboratory 
Chiron Corporation 
ChromaVision Medical Systems, 
 Inc. 
Clinical Design Group Inc. 
Cognigen 
Community Medical Center (NJ) 
Copan Diagnostics Inc. 
Cosmetic Ingredient Review 
Cubist Pharmaceuticals 
Dade Behring Inc. - Deerfield, IL 
Dade Behring Inc. - Glasgow, DE 
Dade Behring Inc. - Marburg, 
 Germany 
Dade Behring Inc. - Sacramento, CA 
Dade Behring Inc. - San Jose, CA 
David G. Rhoads Associates, Inc. 
Diagnostics Consultancy 
Diagnostic Products Corporation 
Eiken Chemical Company, Ltd. 
Elan Pharmaceuticals 
Electa Lab s.r.l. 
Enterprise Analysis Corporation 
Essential Therapeutics, Inc. 
EXPERTech Associates, Inc. 
F. Hoffman-La Roche AG 
Fort Dodge Animal Health 
General Hospital Vienna (Austria) 

Gen-Probe 
GlaxoSmithKline 
Greiner Bio-One Inc. 
IGEN Inc. 
Immunicon Corporation 
Instrumentation Laboratory 
International Technidyne  
  Corporation 
IntraBiotics Pharmaceuticals, Inc. 
I-STAT Corporation 
Johnson and Johnson Pharmaceutical 
 Research and Development, L.L.C. 
LAB-Interlink, Inc. 
Laboratory Specialists, Inc. 
Labtest Diagnostica S.A. 
LifeScan, Inc. (a Johnson & Johnson 
 Company) 
Lilly Research Laboratories 
Medical Device Consultants, Inc. 
Merck & Company, Inc. 
Minigrip/Zip-Pak 
mvi Sciences (MA) 
Nichols Institute Diagnostics  
  (Div. of Quest Diagnostics, Inc.) 
NimbleGen Systems, Inc. 
Nissui Pharmaceutical Co., Ltd. 
Nippon Becton Dickinson Co., Ltd. 
Norfolk Associates, Inc. 
Novartis Pharmaceuticals 
 Corporation 
Ortho-Clinical Diagnostics, Inc.  
  (Rochester, NY)  
Ortho-McNeil Pharmaceutical 
Oxoid Inc. 
Paratek Pharmaceuticals 
Pfizer Inc 
Pharmacia Corporation 
Philips Medical Systems      
Powers Consulting Services 
Premier Inc. 
Procter & Gamble Pharmaceuticals, 
 Inc. 
QSE Consulting 
Quintiles, Inc. 
Radiometer America, Inc. 
Radiometer Medical A/S 
Replidyne 
Roche Diagnostics GmbH 
Roche Diagnostics, Inc. 
Roche Laboratories (Div. Hoffmann-
 La Roche Inc.) 
Sarstedt, Inc. 
SARL Laboratoire Carron (France) 
Schering Corporation 
Schleicher & Schuell, Inc. 
Second Opinion 
Seraphim Life Sciences Consulting 
 LLC  
Streck Laboratories, Inc. 
Synermed Diagnostic Corp. 
Sysmex Corporation (Japan) 
Sysmex Corporation (Long Grove, 
 IL) 
The Clinical Microbiology Institute 
The Toledo Hospital (OH) 
Theravance Inc. 
Transasia Engineers 
Trek Diagnostic Systems, Inc. 
Tyco Kendall Healthcare 
Versicor, Inc. 
Vetoquinol S.A. 
Vysis, Inc. 
Wyeth Research 
Xyletech Systems, Inc. 
YD Consultant 
YD Diagnostics (Seoul, Korea) 
 
Trade Associations 
 
AdvaMed 
Japan Association Clinical 
  Reagents Ind. (Tokyo, Japan) 
Medical Industry Association 
   of Australia 
 
Associate Active Members 
 
31st Medical Group/SGSL (APO, 
 AE) 
67th CSH Wuerzburg, GE (NY) 
121st General Hospital (CA) 
Academisch Ziekenhuis-VUB  
  (Belgium) 
Acadiana Medical Laboratories, 
  LTD (LA) 
Advocate Healthcare Lutheran 
 General (IL) 
Akershus Central Hospital and AFA  
  (Norway) 

Albemarle Hospital (NC) 
Allegheny General Hospital (PA) 
Allina Health System (MN) 
Alton Ochsner Medical Foundation  
 (LA) 
Anne Arundel Medical Center (MD) 
Antwerp University Hospital  (Belgium) 
Arkansas Department of Health 
ARUP at University Hospital (UT) 
Armed Forces Research Institute of  
  Medical Science (APO, AP) 
Associated Regional & University 
 Pathologists (UT) 
Atlantic Health System (NJ) 
Aurora Consolidated Laboratories (WI) 
AZ Sint-Jan (Belgium) 
Azienda Ospedale Di Lecco (Italy) 
Baxter Regional Medical Center (AR) 
Bay Medical Center (MI) 
Baystate Medical Center (MA) 
Bbaguas Duzen Laboratories (Turkey) 
BC Biomedical Laboratories (Surrey, 
 BC, Canada) 
Bermuda Hospitals Board 
Bo Ali Hospital (Iran) 
Brooks Air Force Base (TX) 
Broward General Medical Center (FL) 
Cadham Provincial Laboratory 
Calgary Laboratory Services 
Cape Breton Healthcare Complex 
 (Nova Scotia, Canada) 
Carilion Consolidated Laboratory (VA) 
Cathay General Hospital (Taiwan) 
Cavan General Hospital (Ireland) 
Central Peninsula General Hospital (AK) 
Central Texas Veterans Health Care  
  System 
Centro Diagnostico Italiano (Milano, 
 Italy) 
Champlain Valley Physicians Hospital 
 (NY) 
Chang Gung Memorial Hospital 
 (Taiwan) 
Changi General Hospital  
 (Singapore) 
The Charlotte Hungerford Hospital 
 (CT) 
Children’s Hospital (LA) 
Children’s Hospital (NE) 
Children’s Hospital & Clinics (MN) 
Children’s Hospital Medical Center  
  (Akron, OH) 
Children’s Hospital of Philadelphia (PA) 
Children’s Medical Center of Dallas (TX) 
CHR St. Joseph Warquignies  (Belgium) 
Clarian Health–Methodist Hospital (IN) 
CLSI Laboratories (PA) 
Commonwealth of Kentucky 
Community Hospital of Lancaster (PA) 
CompuNet Clinical Laboratories (OH) 
Cook County Hospital (IL) 
Cook Children’s Medical Center (TX) 
Covance Central Laboratory Services (IN) 
Danish Veterinary Laboratory (Denmark) 
Danville Regional Medical Center (VA) 
Dean Medical Center (WI) 
Department of Health & Community  
 Services (New Brunswick, Canada) 
DesPeres Hospital (MO) 
Detroit Health Department (MI) 
Diagnosticos da América S/A (Brazil) 
Dianon Systems, Inc. 
Dr. Everett Chalmers Hospital (New 
 Brunswick, Canada) 
Doctors Hospital (Bahamas) 
Duke University Medical Center (NC) 
Dwight David Eisenhower Army Med. Ctr. 
 (GA) 
E.A. Conway Medical Center (LA) 
East Side Clinical Laboratory (RI) 
Eastern Health (Vic., Australia) 
Elyria Memorial Hospital (OH) 
Emory University Hospital (GA) 
Fairview-University Medical Center (MN) 
Federal Medical Center (MN) 
Florida Hospital East Orlando 
Focus Technologies (CA) 
Focus Technologies (VA) 
Foothills Hospital (Calgary, AB, Canada) 
Fresenius Medical Care/Spectra East (NJ) 
Fresno Community Hospital and Medical 
 Center 
Frye Regional Medical Center (NC) 
Gambro BCT (CO) 
Gamma Dynacare Medical Laboratories 
 (ON, Canada) 
Geisinger Medical Center (PA) 
Grady Memorial Hospital (GA) 
Guthrie Clinic Laboratories (PA) 



 

 

Hahnemann University Hospital (PA) 
Harris Methodist Fort Worth (TX) 
Hartford Hospital (CT) 
Health Network Lab (PA) 
Health Partners Laboratories (VA) 
Highlands Regional Medical Center (FL) 
Hoag Memorial Hospital Presbyterian 
 (CA) 
Holy Cross Hospital (MD) 
Holmes Regional Medical Center  
  (FL) 
Holzer Medical Center (OH)  
Hôpital du Sacré – Coeur de  Montreal 
 (Montreal, Quebec, Canada) 
Hôpital Maisonneuve – Rosemont 
 (Montreal, Canada) 
Hôpital Saint-LUC (Montreal, 
 Quebec, Canada) 
Hospital for Sick Children  (Toronto, 
 ON, Canada) 
Hospital Sousa Martins (Portugal) 
Hotel Dieu Hospital (Windsor, ON,  
  Canada) 
Huddinge University Hospital  
  (Sweden) 
Hurley Medical Center (MI) 
Indiana University 
Innova Fairfax Hospital (VA) 
Institute of Medical and Veterinary 
 Science (Australia) 
International Health Management  
  Associates, Inc. (IL) 
Jackson Memorial Hospital (FL) 
Jersey Shore Medical Center (NJ) 
John F. Kennedy Medical Center  
  (NJ) 
John Peter Smith Hospital (TX) 
Kadlec Medical Center (WA) 
Kaiser Permanente Medical Care  
  (CA) 
Kaiser Permanente (MD) 
Kantonsspital (Switzerland) 
Kenora-Rainy River Regional  
  Laboratory Program (Ontario,  
  Canada) 
Kimball Medical Center (NJ) 
King’s Daughter Medical Center    
 (KY) 
Klinični Center (Slovenia) 
LabCorp (NC) 
Laboratoire de Santé Publique du 
 Quebec (Canada) 
Laboratorio Dr. Echevarne (Spain) 
Laboratório Fleury S/C Ltda.  
  (Brazil)  
Laboratory Corporation of America 
 (NJ) 
LAC and USC Healthcare  
   Network (CA) 
Lakeland Regional Medical Center      
  (FL) 
Lancaster General Hospital (PA) 
Langley Air Force Base (VA) 
LeBonheur Children’s Medical 
 Center (TN) 
L'Hotel-Dieu de Quebec (Canada) 
Libero Instituto Univ. Campus  
   BioMedico (Italy) 
Lourdes Health System (NJ) 
Louisiana State University  
   Medical Center 

Maccabi Medical Care and Health  
   Fund (Israel) 
Malcolm Grow USAF Medical 
 Center (MD) 
Martin Luther King/Drew Medical   
 Center (CA) 
Massachusetts General Hospital 
 (Microbiology Laboratory) 
MDS Metro Laboratory Services  
  (Burnaby, BC, Canada) 
Medical College of Virginia  
  Hospital 
Medicare/Medicaid Certification, 
  State of North Carolina 
Memorial Medical Center (IL) 
Memorial Medical Center (LA) 
 Jefferson Davis Hwy 
Memorial Medical Center (LA) 
 Napoleon Avenue 
Mercy Medical Center (IA) 
Methodist Hospital (TX) 
MetroHealth Medical Center (OH) 
Michigan Department of  
 Community Health 
Mississippi Baptist Medical Center 
Monte Tabor – Centro Italo -  
  Brazileiro de Promocao (Brazil) 
Montreal Children’s Hospital 
  (Canada) 
Montreal General Hospital (Canada) 
National Institutes of Health (MD) 
National University Hospital   
 (Singapore) 
Naval Hospital – Corpus Christi 
(TX) 
Nebraska Health System 
New Britain General Hospital (CT) 
New England Fertility Institute (CT) 
New England Medical Center (MA) 
New Mexico VA Health Care 
 System 
New York University Medical 
 Center 
NorDx (ME) 
North Carolina State Laboratory of 
  Public Health 
North Shore – Long Island Jewish  
  Health System Laboratories (NY) 
North Shore University Hospital 
 (NY) 
Northwestern Memorial Hospital  
  (IL) 
O.L. Vrouwziekenhuis (Belgium) 
Ordre professionnel des  
   technologists médicaux du  
  Québec 
Ospedali Riuniti (Italy) 
The Ottawa Hospital 
   (Ottawa, ON, Canada) 
OU Medical Center (OK) 
Pathology Associates Medical 
 Laboratories (WA) 
The Permanente Medical Group  
  (CA) 
Piedmont Hospital (GA) 
Pocono Medical Center (PA) 
Presbyterian Hospital of Dallas  
  (TX) 
Providence Health Care 
Queen Elizabeth Hospital  (Prince  
  Edward Island, Canada) 

Queensland Health Pathology 
 Services (Australia) 
Quest Diagnostics Incorporated  
  (CA) 
Quintiles Laboratories, Ltd. (GA) 
Regions Hospital 
Reid Hospital & Health Care 
 Services (IN) 
Research Medical Center (MO) 
Rex Healthcare (NC) 
Rhode Island Department of Health  
  Laboratories 
Riverside Medical Center (IL) 
Riyadh Armed Forces Hospital 
  (Saudi Arabia) 
Robert Wood Johnson University 
 Hospital (NJ) 
Royal Columbian Hospital (New    
  Westminster, BC, Canada) 
Saad Specialist Hospital (Saudi 
 Arabia) 
Sacred Heart Hospital (MD) 
Saint Mary’s Regional Medical  
  Center (NV) 
St. Alexius Medical Center (ND) 
St. Anthony Hospital (CO) 
St. Anthony’s Hospital (FL) 
St. Barnabas Medical Center (NJ) 
St-Eustache Hospital (Quebec,  
  Canada) 
St. Francis Medical Ctr. (CA) 
St. John Hospital and Medical 
  Center (MI) 
St. John Regional Hospital (St.  
  John, NB, Canada) 
St. John’s Hospital & Health Center 
 (CA) 
St. Joseph Hospital (NE) 
St. Joseph’s Hospital – Marshfield  
  Clinic (WI) 
St. Joseph's Medical Center (NY) 
St. Jude Children's Research 
 Hospital (TN) 
St. Luke’s Regional Medical  
  Center (IA) 
St. Mary of the Plains Hospital    
  (TX) 
St. Mary’s Hospital & Medical  
  Center (CO) 
St. Michael’s Hospital (Toronto, 
 ON, Canada) 
St. Vincent Medical Center (CA) 
Ste. Justine Hospital (Montreal, PQ, 
  Canada) 
Salina Regional Health Center (KS) 
San Francisco General Hospital  
   (CA) 
Santa Clara Valley Medical Center    
   (CA) 
Sentara Williamsburg Community 
  Hospital  (VA) 
Seoul Nat’l University Hospital   
  (Korea) 
South Bend Medical Foundation (IN) 
So. California Permanente Medical 
 Group 
Southwest Texas Methodist Hospital 
 (TX) 
South Western Area Pathology       
  Service (Australia) 
Southern Maine Medical Center  

Spartanburg Regional Medical 
 Center (SC) 
Specialty Laboratories, Inc. (CA) 
Stanford Hospital and Clinics (CA) 
State of Washington Department of  
  Health 
Stony Brook University Hospital (NY) 
Stormont-Vail Regional Medical Center 
 (KS) 
Sun Health-Boswell Hospital (AZ) 
Sunnybrook Health Science Center 
 (ON, Canada) 
Swedish Medical Center – Providence 
 Campus (WA) 
Temple University Hospital (PA) 
Tenet Odessa Regional Hospital (TX) 
The Toledo Hospital (OH) 
Touro Infirmary (LA) 
Trident Regional Medical Center (SC) 
Tripler Army Medical Center (HI) 
Truman Medical Center (MO) 
Tuenmun Hospital (Hong Kong) 
UCLA Medical Center (CA) 
UCSF Medical Center (CA) 
UNC Hospitals (NC) 
University College Hospital (Galway, 
 Ireland) 
University Hospital (Gent)  
  (Belgium) 
University Hospitals of Cleveland (OH) 
University of Alabama-Birmingham  
  Hospital 
University of Alberta Hospitals (Canada) 
University of Colorado Health Science 
 Center 
University of Chicago Hospitals (IL) 
University of Illinois Medical Center 
University of the Ryukyus (Japan) 
University of Virginia Medical Center 
UZ-KUL Medical Center (Belgium) 
VA (Hines) Medical Center 
VA (Kansas City) Medical Center (MO)  
VA (San Diego) Medical Center (CA) 
VA (Tuskegee) Medical Center (AL)  
Vejle Hospital (Denmark) 
Virginia Department of Health 
ViroMed Laboratories (MN) 
Warren Hospital (NJ) 
Washington Adventist Hospital (MD) 
Washoe Medical Center  Laboratory (NV) 
Waterford Regional Hospital  (Ireland) 
Wellstar Health Systems (GA) 
West Jefferson Medical Center (LA) 
West Shore Medical Center (MI) 
Wilford Hall Medical Center (TX) 
William Beaumont Army Medical Center 
 (TX) 
William Beaumont Hospital (MI) 
William Osler Health Centre (Brampton, 
 ON, Canada) 
Winn Army Community Hospital   (GA) 
Winnipeg Regional Health Authority 
 (Winnipeg, Canada) 
Wishard Memorial Hospital (IN) 
Yonsei University College of  Medicine 
 (Korea) 
York Hospital (PA) 
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