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Abstract 
 
Clinical and Laboratory Standards Institute document EP24-A2—Assessment of the Diagnostic Accuracy of Laboratory Tests 
Using Receiver Operating Characteristic Curves; Approved Guideline—Second Edition provides guidance for laboratorians and 
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of test performance or to interpret data generated by others. In addition to the use of ROC curves and comparison of two curves, 
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Foreword 
 
Laboratorians, investigators, in vitro diagnostic manufacturers, and clinicians are often interested in how 
well a test performs clinically. This is true whether considering replacing an existing test with a newer 
one, adding a new test to the laboratory’s menu, eliminating tests where possible, or evaluating the 
diagnostic power of a laboratory test relative to another clinical or diagnostic tool. This project was 
originally intended to make recommendations about assessing the clinical performance of diagnostic tests. 
The concepts of Swets and Pickett1 were adopted, whereby clinical performance is divided into (1) a 
discriminatory or diagnostic element (diagnostic accuracy) and (2) a decision or efficacy element. 
Laboratory tests are ordered to help answer questions about patient management. How much help an 
individual test result provides is variable and, in any case, a highly complicated issue. Management 
decisions and strategies are complex activities that require the physician to consider probabilities of 
disease, quality of the data available, effectiveness of various treatment/management alternatives, 
probability of outcomes, and value (and cost) of outcomes to the patient. Many types of clinical data 
(including laboratory results) are usually integrated into a complex decision-making process. Most often, 
a single laboratory test result is not the sole basis for a diagnosis or a patient-management decision.  
 
Therefore, some have criticized the practice of evaluating the diagnostic performance of a test as if it were 
used alone. However, each clinical tool (eg, a clinical laboratory test, an electroencephalogram, an 
electrocardiogram, a nuclide scan, an X-ray, a biopsy, a pulmonary function test, or a sonogram) is meant 
to make some definable discrimination. It is important to know just how inherently accurate each test is as 
a diagnostic discriminator. Note that assessing diagnostic accuracy, without engaging in comprehensive 
clinical decision analysis, is a valid and useful activity for the clinical laboratory. Diagnostic accuracy is 
the most fundamental characteristic of the test itself as a classification device; it measures the ability of 
the test to discriminate among alternative states of health. In the simplest form, this property is the ability 
to distinguish between just two states of health or circumstances. Sometimes this involves distinguishing 
health from disease; other times it might involve distinguishing between benign and malignant disease, 
categorizing subjects as responding to therapy vs those not responding, or predicting who will become ill 
vs who will not. This ability to distinguish or discriminate between two states among subjects is a 
property of the test itself. 
 
Indeed, the ability of the test to distinguish between the relevant alternative states or conditions of the 
subject (ie, diagnostic accuracy) is the most basic property of a laboratory test as a device to help in 
decision making. Note that this basic property cannot be separated from the clinical problem being 
addressed and the spectrum effect of the mix of subject states on which the test system is based. This 
property is the place to start when assessing the value of a test in the patient-management process.  
 
Exploration of the usefulness of medical information, such as test data, involves a number of factors or 
parameters that are not properties of the test system; rather, they are properties of the circumstances of the 
clinical application. These include the probability or prevalence of disease, the possible clinical outcomes 
and the relative values of diagnostic outcomes, the costs to the patient (and others) of incorrect 
information (false-positive and false-negative classifications), and the costs and benefits of various 
treatment options. These characteristics or properties form the context in which test information is used, 
but are not properties of the test system. These factors interact with test results to affect the usefulness of 
the test, but do not affect test accuracy.  
 
In summary, diagnostic accuracy is defined as the basic ability to discriminate between two subclasses of 
subjects when there is some clinically relevant reason to separate them. This concept of diagnostic 
accuracy refers to the quality of the information (classification) provided by the test, which should be 
distinguished from the practical usefulness of the information.1 Both are aspects of test performance. The 
assessment of diagnostic accuracy is the place to start in evaluating test performance. If a test cannot 
discriminate between clinically relevant subclasses of subjects, then there is little incentive to further 
explore a possible clinical role. If, on the other hand, a test does exhibit a substantial ability to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Number 23 EP24-A2
 

 viii 

discriminate, then by examining the degree of accuracy of the test and/or by comparing its accuracy to 
that of other tests, one can decide whether to delve into a more complex assessment of its role in patient 
management (decision analysis). This document addresses the assessment of diagnostic accuracy but not 
the analysis of usefulness or the role of the test in the patient-management process. 
 
In this second edition of the guideline, the document development committee has provided more details 
on the construction and interpretation of receiver operating characteristic (ROC) curves. Many more 
examples are included to help the reader assess an individual curve and its associated area under the 
curve, as well as to compare two curves. Sample size calculations are provided for the first time.  
 
NOTE: Although a step-by-step technique for generating ROC curves has been presented in EP24, it is 
assumed that most users of this guideline will access commercially available software for this task. 
 
Key Words 
 
Area under the curve, diagnostic accuracy, false-negative fraction, false-positive fraction, medical 
decision level, receiver operating characteristic curve, sensitivity, specificity, true-negative fraction, true-
positive fraction 
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Assessment of the Diagnostic Accuracy of Laboratory Tests Using Receiver 
Operating Characteristic Curves; Approved Guideline—Second Edition  

 
1 Scope  
 
This guideline outlines the steps and principles of prospectively planned and retrospective studies to 
evaluate the intrinsic diagnostic accuracy of a clinical laboratory test, defined as its fundamental ability to 
discriminate correctly among alternative states of health. It is not intended to help determine how best to 
use a diagnostic test in clinical practice, but instead to determine how accurate a laboratory test is in terms 
of diagnostic sensitivity and specificity.  
 
Receiver operating characteristic (ROC) curve methodology arose in response to needs in electronic 
signal detection and problems with radar in the early 1950s.2 It is derived from conditional probabilities, 
as originally formulated by Bayes.3 This guideline aims to define ROC curves and to explain how to 
design, construct, interpret, and apply the information from ROC studies to evaluate diagnostic tests. For 
simplicity, only continuous scales, such as those typical for in vitro diagnostic tests, are discussed. The 
clinical condition that the test is intended to detect must be verifiable through some means other than the 
test under investigation. In other words, there must be an independent clinical reference standard against 
which one can compare the test. By selecting cutoffs between positive and negative diagnoses along the 
continuous scale of the test, the diagnostic outcomes for these decision levels are compared to the true 
clinical condition, which, in turn, generates the ROC curve. 
 
This guideline will be of value to a wide variety of possible users, including: 
 
• Investigators who are developing new tests for specific applications 
 
• Manufacturers of reagents and devices for performing tests who are interested in assessing or 

validating test performance in terms of diagnostic accuracy 
 
• Regulatory agencies interested in establishing requirements for claims related to diagnostic accuracy 
 
• Clinical laboratorians who are reviewing data or the literature, and/or generating their own data, to 

make decisions about which tests to employ in their laboratories 
 

• Health care or scientific workers interested in critical evaluation of data being presented on clinical 
test performance 

 
2 Introduction 
 
An ROC curve provides the following advantageous properties: 
 
• It visually displays the performance of one or more diagnostic markers or tests across the entire 

measuring interval.  
 

• By plotting unitless values (sensitivity vs specificity or sensitivity vs 1 − specificity), one can 
compare the diagnostic performance of two or more diagnostic markers or tests regardless of: 
– Units of expression of different markers or tools (eg, mg/dL, mmol/L, U/L) 
– Type of diagnostic test (eg, a clinical laboratory test, pulmonary function test, radiography) 
– Type of biological sample analyzed (eg, serum vs urine, saliva vs blood)  
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• It gives a clinician flexibility to select the appropriate medical decision level depending upon the 
medical situation and the clinical setting. (NOTE: In a pivotal study, selecting the optimal cutoff and 
evaluating the diagnostic accuracy in the same study leads to the biased estimation [overestimation] 
of the diagnostic accuracy. These issues are discussed in detail in the literature.4-6) 

 
By evaluating (or examining) ROC based on a marker, the clinician could choose a decision level offering 
high sensitivity but lower specificity. In another situation using this marker, the clinician could choose a 
different decision level offering high specificity but lower sensitivity to reduce false positives (FPs). 
 
3 Standard Precautions 
 
Because it is often impossible to know what isolates or specimens might be infectious, all patient and 
laboratory specimens are treated as infectious and handled according to “standard precautions.” Standard 
precautions are guidelines that combine the major features of “universal precautions and body substance 
isolation” practices. Standard precautions cover the transmission of all known infectious agents and thus 
are more comprehensive than universal precautions, which are intended to apply only to transmission of 
blood-borne pathogens. Standard and universal precaution guidelines are available from the Centers for 
Disease Control and Prevention.7 For specific precautions for preventing the laboratory transmission of all 
known infectious agents from laboratory instruments and materials and for recommendations for the 
management of exposure to all known infectious diseases, refer to CLSI document M29.8  
 
4 Terminology  
 
4.1 A Note on Terminology 

 
CLSI, as a global leader in standardization, is firmly committed to achieving global harmonization 
wherever possible. Harmonization is a process of recognizing, understanding, and explaining differences 
while taking steps to achieve worldwide uniformity. CLSI recognizes that medical conventions in the 
global metrological community have evolved differently in the United States, Europe, and elsewhere; that 
these differences are reflected in CLSI, International Organization for Standardization (ISO), and 
European Committee for Standardization (CEN) documents; and that legally required use of terms, 
regional usage, and different consensus timelines are all important considerations in the harmonization 
process. In light of this, CLSI’s consensus process for development and revision of standards and 
guidelines focuses on harmonization of terms to facilitate the global application of standards and 
guidelines. 
 
Essentially, new documents are obliged to adhere to the most current version of the International 
Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM)9 whenever an 
ambiguity occurs in the interpretation or understanding of terms. In the latest edition, many definitions 
have become more explicit and understandable, but the language of the VIM is difficult and compact. 
VIM deals with general metrology and terminology that should be useful for most disciplines that 
measure quantities. 
 
The understanding of a few terms has changed during the last decade as the concepts have developed. 
Precision (measurement precision) is defined as closeness of agreement between indications or measured 
quantity values obtained by replicate measurements on the same or similar objects under specified 
conditions. The term measurand is used when referring to the quantity intended to be measured, instead 
of analyte (component represented in the name of a measurable quantity) when its use relates to a 
biological fluid/matrix. Additionally, clinical accuracy has been changed to diagnostic accuracy because 
the term “clinical” has a regulatory connotation in Europe and elsewhere. 
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4.2 Definitions 
 
clinical state – a state of health or disease that has been defined by either a clinical definition or some 
other independent reference standard; NOTE: Examples of clinical states include “no disease found,” 
“disease 1” (where 1 represents the first clinical state under consideration), “disease 2” (where 2 
represents the second clinical state under investigation), and so on. 
 
decision level//decision threshold//decision point//cutoff level – a test value or statistic that marks the 
upper (or lower) boundary between diagnostic categories, ie, between negative (acceptable or unaffected) 
results and positive (unacceptable or affected) results. 
 
diagnostic accuracy (clinical accuracy) – the ability of a diagnostic test to discriminate between 
diseased and nondiseased subjects, or between two or more clinical states; NOTE: An example would be 
discrimination between rheumatoid arthritis and systemic lupus erythematosus.  
 
diagnostic test – a measurement or examination used to classify subjects into a particular class or clinical 
state; NOTE: Laboratory tests are often called “in vitro diagnostic” tests.  
 
distribution-free (statistical procedure) – one that does not presuppose that the data arise from a 
distribution of a particular kind, such as the normal (gaussian) family of distributions; NOTE 1: A near-
synonym is “nonparametric” (see definition for nonparametric, below); NOTE 2: For example, drawing 
a histogram is a simple distribution-free operation, as is any “local” maneuver aimed at smoothing the 
histogram or smoothing a trend. Any procedure exclusively based on an ordering (ranking) of 
observations, rather than on their numerical values, is also distribution-free; NOTE 3: “Distribution-free” 
does not mean “assumption-free.” Assumptions of representative (fair) sampling and independence 
(independent observations), for instance, are universal. 
 
false-negative fraction (FNF) – ratio of subjects who have the disease, but who have a negative test 
result, to all subjects who have the disease; FN / (FN + true positive [TP]); equivalent to (1 − sensitivity).  
 
false-negative (FN) result – negative test result for a subject in whom the disease or condition of interest 
is present.  
  
false-positive fraction (FPF) – ratio of subjects who do not have the disease, but who have a positive test 
result, to all subjects who do not have the disease; FP / (FP + true negative [TN]); same as (1 − specificity).  
 
false-positive (FP) result – positive test result for a subject in whom the disease or condition of interest 
is absent. 
 
measurand – quantity intended to be measured (JCGM 200:2008)9; NOTE 1: The specification of a 
measurand requires knowledge of the kind of quantity, description of the state of the phenomenon, body, 
or substance carrying the quantity, including any relevant component, and the chemical entities involved 
(JCGM 200:2008)9; NOTE 2: The term “measurand” and its definition encompass all quantities, while 
the commonly used term “analyte” refers to a tangible entity subject to measurement. For example, 
“substance” concentration is a quantity that may be related to a particular analyte. 
 
nonparametric (statistical procedure) – a “distribution-free” (see definition for distribution-free, 
above) statistical procedure is also called nonparametric because, unlike a parametric procedure, it does 
not assume a particular distribution.  
 
parametric (statistical procedure) – one that involves an assumption as to the kind of distribution 
underlying the data and focuses on estimating a small number of characterizing quantities, called the 
parameters of the distribution; NOTE 1: For example, a normal (gaussian) distribution is specified by just 
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two parameters, that is, its mean and its standard deviation; NOTE 2: See definitions for nonparametric 
and distribution-free, above. 
 
precision (measurement) – closeness of agreement between indications or measured quantity values 
obtained by replicate measurements on the same or similar objects under specified conditions (JCGM 
200:2008)9; NOTE 1: Measurement precision is usually expressed numerically by measures of 
imprecision, such as standard deviation, variance, or coefficient of variation under the specified 
conditions of measurement (JCGM 200:2008)9; NOTE 2: The “specified conditions” can be, for 
example, repeatability conditions of measurement, intermediate precision conditions of measurement, or 
reproducibility conditions of measurement (see ISO 5725-3:1994)10 (JCGM 200:2008)9; NOTE 3: 
Measurement precision is used to define measurement repeatability, intermediate measurement precision, 
and measurement reproducibility (JCGM 200:2008)9; NOTE 4: Sometimes “measurement precision” is 
erroneously used to mean measurement accuracy (JCGM 200:2008).9 
 
prevalence – the probability of a particular clinical state in a specified population or subpopulation at a 
given point in time; NOTE 1: One can expect the prevalence to change, depending upon the population 
under study; NOTE 2: Prevalence is a frequency, not a rate. 
 
receiver operating characteristic (ROC) curve – a graphical description of test performance 
representing the relationship between the true-positive fraction (sensitivity) and the false-positive fraction 
(1 − specificity); NOTE: Alternate terms are “ROC plot,” “receiver operator characteristic curve,” 
“receiver operating characteristic plot,” and “receiver operator characteristic plot.”  
 
sensitivity (diagnostic) – the ability of a test to give a positive result for subjects who have the disease or 
condition for which they are being tested; NOTE 1: It is measured as the ratio of positive test results in 
those who have the condition to the total number who have the condition, and is often expressed as a 
percentage; NOTE 2: Formerly, the term “clinical sensitivity” was used in CLSI documents. 
 
specificity (diagnostic) – the ability of a test to give a negative result for subjects who do not have the 
disease or condition for which they are being tested; NOTE 1: It is measured as the ratio of negative test 
results in those unaffected by the condition to the total number of condition-free subjects, and is often 
expressed as a percentage; NOTE 2: Formerly, the term “clinical specificity” was used in CLSI 
documents. 
 
spectrum (of the condition) – various presentations of the condition of interest due to expected 
dissimilar manifestations with respect to various matrix characteristics; NOTE 1: In a testing situation, 
the condition of interest is usually defined to be binary, ie, it is either present or absent; NOTE 2: 
Notwithstanding this generalization, the condition of interest can often be expected to manifest itself 
differently with respect to various conditions (eg, stage of disease, severity of disease, genetic 
background, body composition, comorbidity, lifestyle, and demographics) that cannot be captured when 
dichotomizing its continuum. 
 
spectrum bias – given a test and its intended application, the bias between estimated test performance 
and true test performance when the sample used for evaluating an assay does not properly represent the 
entire disease spectrum over the target (intended-use) population; NOTE 1: Spectrum bias is due to 
spectrum effect when one is not careful with the study design, ie, when the subject selection method 
departs substantially from true random sampling. When this occurs, biased estimates of sensitivity, 
specificity, receiver operating characteristic curves, and their summaries will result; NOTE 2: Spectrum 
bias can be summarized, in mathematical terms, as a problem created by improper sampling. 
 
spectrum effect – effect that sampling different condition substrata in a population will have on test 
performance estimators. 
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true-negative fraction (TNF) – see specificity. 
 
true-negative (TN) result – negative test result in a subject in whom the disease is absent.  
 
true-positive fraction (TPF) – see sensitivity. 
 
true-positive (TP) result – positive test result in a diseased or affected subject.  

 
uncertainty (of measurement) – non-negative parameter characterizing the dispersion of the quantity 
values being attributed to a measurand, based on the information used (JCGM 200:2008)9; NOTE: 
Measurement uncertainty comprises, in general, many components. Some of these may be evaluated by 
Type A evaluation of measurement uncertainty from the statistical distribution of the quantity values from 
series of measurements and can be characterized by standard deviations (SDs). The other components, 
which may be evaluated by Type B evaluation of measurement uncertainty, can also be characterized by 
SDs, evaluated from probability density functions based on experience or other information (JCGM 
200:2008).9  
 
4.3 Abbreviations and Acronyms 
 
AMI  acute myocardial infarction 
AUC  area under the curve 
CDA  cumulative distribution analysis 
CEN  Comité Européen de Normalisation (European Committee for Standardization) 
CI  confidence interval 
CK-MB creatine kinase MB fraction 
FN  false negative 
FNF  false-negative fraction 
FP  false positive 
FPF  false-positive fraction 
ISO  International Organization for Standardization 
LD  lactic dehydrogenase 
LDL  low-density lipoprotein  
LR  likelihood ratio  
OxLDL  oxidized low-density lipoprotein  
PoC  probability of concordance  
RIA   radioimmunoassay  
ROC  receiver operating characteristic  
SD  standard deviation  
SE  standard error 
STARD Standards for the Reporting of Diagnostic Accuracy Studies 
TN  true negative 
TNF  true-negative fraction 
TP  true positive 
TPF  true-positive fraction 
VIM International Vocabulary of Metrology – Basic and General Concepts and Associated 

Terms 
 
5 Designing the Basic Evaluation Study 
 
The sequence of events in the ROC curve analysis is explained in Figure 1. 
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Figure 1. Flow Chart for the Evaluation Procedure 
 
NOTE: Guidelines for the presentation of diagnostic test evaluations have been given by the international 
STARD (Standards for the Reporting of Diagnostic Accuracy Studies) group.11,a  
 

                                                      
a The initial version of STARD was published simultaneously in major journals in 2003. The current version is available at 
www.stard-statement.org. Their recommendations have been incorporated in the present Section 5 without further reference to 
STARD. 
 

Define the Clinical Question (see Section 5.1) 
• Characterize the subject population. 
• State the clinical decision to be made. 
• Identify the role of the test(s) in making the decision. 

Select a Statistically Valid, Representative Study Sample (see Section 5.2) 
• Select a statistically valid sample of subjects who are representative of the population 

identified above. 
• Select the sample population independent of test results. 
• Account for subjects for whom data are incomplete. 

Establish the “True” Clinical State 
of Each Subject (see Section 5.3) 
• Adopt independent, external standards 

or criteria for accurate, unbiased 
classification of subjects. 

Test the Study Subjects (see Section 5.4) 
• Perform the test(s) without knowing the 

clinical classification of the subjects. 
• When comparing multiple tests, perform 

all tests on all subjects, preferably in a 
batch mode, and at the same point in their 
clinical course.

Completion of both required

Assess the Diagnostic Accuracy of the Test(s) (see Sections 6 and 7) 
• Compile test results and construct ROC curves to evaluate test accuracy 

(see Section 6). 
• Interpret individual test results and compare alternative tests on the basis of their 

ROC curves and analyses (see Section 7). 
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5.1 Define the Clinical Question 
 
The goal of any laboratory test is to provide valuable information for patient care. There is always a 
relevant clinical question that must be defined because it establishes the particular patient-care issue to be 
addressed by the evaluation. For example, can troponin concentrations be used to discriminate between 
acute myocardial infarction (AMI) and other causes of chest pain in subjects who present to an emergency 
department with a history suggestive of AMI? Or, which, among several tests, is the best to use for 
discriminating between those subjects with breast cancer who will respond to a particular chemotherapy 
and those who will not?  
 
Usually, the clinical question or goal involves a population of apparently similar subjects (grouped 
together on the basis of information available before the test under evaluation is done) that should be 
subdivided into relevant management subgroups. The results of the test should indicate to which 
management subgroup individual subjects belong. For example, a radioimmunoassay (RIA) for serum 
angiotensin-converting enzyme activity might be expected to answer the following question: “Among 
subjects with hypercalcemia, which ones have sarcoidosis?” The apparently similar subjects share the 
characteristic of hypercalcemia. The test helps to divide them into subgroups: those with sarcoidosis and 
those with some other cause of hypercalcemia (such as malignancy or hyperparathyroidism), each of 
which would receive different management. 
 
In all cases, the target population must be well defined, including the nature, duration, and magnitude of 
the qualifying conditions. For example, this might include a serum calcium concentration greater than 
“X” on two occasions at least one week apart, as well as age range, sex, and other findings (eg, chest 
X-ray) that are required for including and excluding subjects from the population. By requiring a rigorous 
definition for the target population of an ROC study, one also defines the clinical question, and, in turn, 
the future population to which the diagnostic accuracy results of the test in question will apply. 
 
5.2 Select a Statistically Valid, Representative Study Sample 
 
The process of clearly defining the clinical question serves to identify the population relevant to the test 
evaluation. From this target population, a sample of subjects is chosen for the study. These subjects 
should be selected to represent the larger population of clinical interest about which conclusions are to be 
drawn.  
 
When the accuracy of a test as a screening tool is being assessed, then the study sample should be 
representative of the population to be screened. Consider, for example, fecal occult blood testing for colon 
cancer. If the goal is to evaluate the accuracy of the test in discovering colon cancer in middle-aged 
subjects with no specific signs or symptoms suggestive of the disease, then the sample studied should be 
taken entirely from such a population. Studying a group of cancer-free, unaffected young volunteers or a 
group already known to have carcinoma of the colon is not appropriate.  
 
The same principles apply when a test is not being used for screening, but for differentiating between 
disease states in symptomatic subjects. If a test is to be used to identify acute pancreatitis in subjects with 
a history and presentation indicating the possibility of pancreatitis, the sample should comprise such 
persons. Because the test is not intended to distinguish between unaffected volunteers and subjects with 
well-defined pancreatitis, a study sample containing unaffected subjects is not appropriate. Conclusions 
based on such a sample would not serve the purpose of the study. 
 
5.2.1 Selection Bias 
 
Selection bias occurs when subjects do not properly represent the relevant target population. To avoid 
selection biases that could compromise the study’s validity or relevance to the question being posed, 
choose only subjects who fit within well-defined inclusion/exclusion criteria. Make certain that these 
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criteria define the clinical question and thus the relevant target population. Using only subjects with well-
established or clinically apparent disease, for example, can exclude a large subgroup of subjects who may 
be more difficult to diagnose, especially those with occult or early disease. Likewise, using young, 
unaffected volunteers can be inappropriate to the presumptive application of the test. Insistence on 
creating a consecutive series from a well-defined stream of (candidate) cases, with documentation of 
reasons for exclusion (“reject log”), is mandatory in clinical “field trials” because it is the only effective 
safeguard against subjectivity and arbitrariness in the data collection (see Section 5.2.3); analogous rules 
apply in other phases of test development.  
 
Measures of accuracy are influenced by the spectrum effect of varied medical conditions in the target 
population and, therefore, in the sample. Diagnostic tests must be evaluated in a clinically relevant 
population. However, test performance often varies across medical conditions. Failure to recognize and 
address such heterogeneity in a population will lead to estimates of test performance that are not 
generalizable to the relevant clinical question. This spectrum effect can be addressed by taking all 
subjects in order from a population that is typical of the populations in which this test will be used or by 
stratifying the results into identifiable medical conditions, a strategy that may prove difficult in some 
cases because of sample size considerations.12 The importance of the proper spectrum of subjects is 
discussed in detail in the literature.13-17 
 
5.2.2 Data Collected or Changed Retrospectively 
 
Do not allow the test results or the testing procedures to affect the selection of subjects. Excluding 
subjects with unexpected, equivocal, or discordant results is likely to make the test appear more useful 
than it is. A retrospective study with only subjects who had their test results reported excludes subjects 
who could not be successfully tested for various reasons, again possibly distorting the performance of the 
test. 
 
5.2.3 Selection Before Testing 
 
Choosing subjects before testing acts as a precaution against the biases introduced when the test results 
directly or indirectly influence the selection of subjects. To avoid any biases, include in the test all 
subjects who meet the definition of the target (intended-use) population until a predetermined number of 
subjects is obtained. Once chosen, subjects should not be dropped from the study. If some subjects do not 
complete the study (because of technical errors, analytical interferences, death, or lack of follow-up), they 
should be accounted for in the final report (or they should be tabulated along with the other data and the 
ensuing consequences should be discussed). The same applies to indeterminate test results, unless 
“indeterminate” can be treated as a test result in its own right. Further, blinding is required for the 
personnel responsible for determination of clinical status from test results to ensure objectivity. 
 
5.2.4 Sample Size 
 
When determining the ROC curve, the diagnostic accuracy of detecting affected subjects at different 
decision levels is independent of the diagnostic accuracy of detecting unaffected subjects at the same 
decision levels. The uncertainty of this estimation, and of the ROC curve, decreases with increasing 
sample sizes. To minimize the uncertainty of the estimate of diagnostic accuracy for both affected and 
unaffected subjects, it is often desirable to have approximately equal numbers of subjects who are truly 
affected and truly unaffected. For sample size considerations related to sensitivity and specificity, see 
Section 7.1.3. For sample size considerations related to area under the curve (AUC), see Section 7.2.4.  
 
5.2.5 Consult a Statistician 
 
When the conditions of the study are complex, consult a statistician. 
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5.3 Establish the “True” Clinical State of Each Subject 
 
An objective assessment of diagnostic accuracy requires comparing the results provided by the test with 
some independent, external definition of truth. The clinical question, defined above, establishes the 
categories of “truth” (states of health) that are relevant to the evaluation. Criteria or standards are applied 
to place individual persons in their respective categories of truth. The criteria or standards may include 
biopsy data, surgical or autopsy findings, imaging data, long-term clinical observation, or a more 
definitive laboratory test. The criteria or standards are adequate for practical purposes if they are 
substantially reliable and established independently of the diagnostic system (test) undergoing 
evaluation.17 
 
Because a subject’s condition may change over time, either spontaneously or in response to treatment, the 
diagnostic truth should be established simultaneously with the testing. Prognostic truths should be 
established according to a defined protocol that avoids censoring and other biases. 
 
5.3.1 Validity of Evaluation 
 
When evaluating the diagnostic accuracy of a test, the validity of the evaluation is limited by the accuracy 
with which the subjects are classified. A perfect test can appear to perform poorly simply because the 
“truth” was not established accurately for each patient and, therefore, the test results disagree with the 
apparent “true” diagnosis. On the other hand, when test results do agree with an inaccurate classification, 
the test will appear to perform better than it actually does. It is important, then, to attempt to classify 
individual persons as correctly as possible, as well as to consider the possible biases in the results caused 
by the classification scheme. The closer the classifications are to the truth, the less distortion there will be 
in the apparent performance of any test being evaluated.  
 
5.3.2 True Clinical Subgroup 
 
Routine clinical diagnoses are likely to be inadequate for evaluation studies. Determining a patient’s true 
clinical subgroup can require procedures such as biopsy, surgical exploration, autopsy examination, 
angiography, or long-term follow-up of response to therapy and clinical outcome. Although such 
procedures can add to the financial cost of the evaluation, a less expensive, routine clinical evaluation can 
prove quite costly in the long term if its erroneous conclusions lead to improper test use or improper 
patient management. 
 
5.3.3 Approaches to Classification 
 
In many clinical situations, obtaining an independent, accurate classification of the patient’s true clinical 
condition is difficult. Several approaches have been developed to deal with the difficulties in identifying 
true states of health. One approach is to define the diagnostic problem (diagnostic classification or 
category) in terms of measurable clinical outcomes.18 A second approach is to employ a consensus, 
majority rule, or expert review to arrive at a less error-prone identification process.19 For an in-depth 
examination of the topic of misclassification, see Fleiss,20 Bross,21 or Goldberg.22 Misclassification affects 
the determination of diagnostic accuracy of a diagnostic test whether the context is classification 
(diagnosis in the narrow sense), eventual outcome (prognosis), or reaction to treatment 
(responsiveness/response potential). 
 
5.3.4 Independent Classification 
 
To avoid bias in evaluating the diagnostic accuracy of a test, the true clinical state should also be 
determined independent of the test(s) under investigation or used for comparison. Of course, the new test 
should not be included in the criteria used to classify the subjects; nor should a closely related test be 
included in these criteria. For example, if an RIA for creatine kinase MB fraction (CK-MB) is being 
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evaluated for the diagnosis of AMI, neither CK-MB by electrophoresis or by immunoinhibition should be 
included in the “gold standard” workup for classifying the study subjects. Furthermore, if the performance 
of the CK-MB assay is to be compared directly to the performance of the lactic dehydrogenase (LD) Type 
1/Type 2 isoenzyme ratio, then LD isoenzyme results should also not be included in the diagnostic criteria 
because the apparent performance will be biased in favor of any test that is part of the gold standard.  
 
5.3.5 Masked Evaluation 
 
To ensure that the classification is not influenced by the result of the test under evaluation, it should be 
performed masked (or blinded), that is, without knowing the results of the test. Furthermore, the criteria 
for classifying each patient into a management subgroup should be as objective as possible. When the 
classification rests on subjective evaluation of clinical or morphological patterns, such as radionuclide 
scans or bone marrow smears, the decision for each patient should reflect the votes cast by experts who 
each interpret the material masked, and independent of the others, supplemented by a process that 
reconciles the differences and thus achieves a consensus decision.  
 
5.4 Test the Study Subjects 
 
5.4.1 Conduct a Masked Study 
 
The person performing the test under evaluation should do so masked, that is, without knowing the 
clinical status of the subject. Ideally, the testing should be completed before the clinical question is 
answered. Knowing the answer to the clinical question can introduce bias.  
 
5.4.2 Identical Specimens 
 
When comparing two or more tests, it is preferable that the subjects be identical for all tests.b Failure to 
use the identical subjects for evaluating each test may result in misleading conclusions because biases can 
affect the selection of subjects. Thus, apparent differences in test performance can simply reflect 
differences in the composition of the groups tested. If some subjects have more advanced and, 
presumably, more easily detectable disease and are tested by only some of the tests, those tests could 
appear to have better sensitivity than the others. Conversely, inclusion of subjects with minimal disease, 
which might be harder to detect, would tend to diminish the apparent sensitivity of tests performed on 
these subjects, as compared with tests not done on these subjects. Performing all tests on all subjects at 
the same point in the course of each subject’s illness ensures that differences in sensitivity and specificity 
are not simply due to differences between the patient materials or to unnoticed differences in the 
application of diagnostic criteria.  
 
5.4.3 Testing Environment 
 
Assaying all samples in one batch is suggested, when possible, to minimize intermediate imprecision. 
However, attention should be given to maintaining measurand stability through proper storage conditions. 
 
As part of defining the clinical question to be answered, it is mandatory to define the testing environment. 
This includes issues such as who obtains the specimen and where and when the specimen is obtained (eg, 
“in the emergency department immediately on arrival”), preparation of the patient, storage of specimens, 
and technical monitoring of laboratory processes. 
 
One should not perform repeat testing if the measurand is unstable. 
 

                                                      
b That is, for the same sample matrix, except with different types of specimens, at least obtained at the same time. 
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6 Construction of a Receiver Operating Characteristic Curve 
 
6.1 Assess the Diagnostic Accuracy of the Test 
 
The diagnostic accuracy of a test is assessed by examining its ability to correctly classify individual 
persons into two subgroups, eg, a subgroup of persons affected by some disease or condition (and 
therefore needing treatment) and a second subgroup of unaffected persons. The condition being assessed 
has only binary states: presence or absence. If there is no overlap in test results from these two subgroups, 
then the test can identify all persons correctly and discriminate between the two subgroups perfectly. 
However, if there is some overlap in the test results for the two subgroups, the ability of the test to 
discriminate is not perfect. In either case, it is desirable to have a way to represent and measure this 
ability to discriminate (ie, diagnostic accuracy). 
 
6.1.1 Diagnostic (Clinical) Sensitivity and Specificity 

 
The probability that a test will be positive or identify the presence of a target condition in a diseased or 
affected group is its diagnostic sensitivity. The probability that a test will be negative or identify the 
absence of a target condition in a nondiseased or unaffected group is its diagnostic specificity.  
 
Diagnostic sensitivity (true-positive fraction [TPF]) is defined as follows: 
 

 
results negative-false of Number +results positive-true of Number

results positive-true of Number ,    (1) 

 
or TP / (TP + FN). This is the fraction of persons who are truly affected by the disease or condition whose 
test results are positive.  
 
Diagnostic specificity (true-negative fraction [TNF]) is defined as follows: 
 

 
results positive-false of Number +results  negative-true of Number

results negative-true of Number ,      (2) 

 
or TN / (TN + FP). This is the fraction of persons who are truly unaffected by a disease or condition whose 
test results are negative.  
 
6.1.2 Receiver Operating Characteristic Curves 

 
The choice of decision level implies a tradeoff between sensitivity and specificity. The range of tradeoffs 
between sensitivity and specificity is conveniently represented by the ROC curve.23 ROC methodology 
was developed in the context of electronic signal detection and issues surrounding the behavior and use of 
radar receivers in the middle of the twentieth century.17 The first known use of this analysis occurred in 
medicine when an ROC-type curve was used in the 1950s to characterize the ability of an automated Pap 
smear analyzer to discriminate between smears with and without malignant cells.24 
 
The ROC curve graphically displays the entire range of a test’s performance for a particular sample group 
of affected and unaffected subjects. It is, then, a “test performance curve,” representing the fundamental 
diagnostic accuracy of the test by plotting all the sensitivity (1 − specificity) (or TPF-FPF) pairs resulting 
from repeatedly varying the decision threshold over the entire measuring interval of results observed. On 
the y-axis, sensitivity, or TPF, is plotted. On the x-axis, false-positive fraction (FPF) (or 1 − specificity) is 
plotted. 
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6.1.2.1 Generating the Receiver Operating Characteristic Curve 
 
Example 1. Suppose an investigator would like to construct an ROC curve on a new assay (Assay X). For 
eight subjects, the investigator collects both assay results and a determination of true clinical status 
determined by an independent clinical reference standard. These are given in Table 1. 
 
Table 1. Determinations of Assay X for Eight Subjects 

 
 

Patient ID 
Assay X 

Concentration 

Clinical Status (Target 
Condition “Present” or 

“Absent”)
1 1.6 ng/mL Absent 
2 2.1 ng/mL Absent 
3 6.4 ng/mL Present 
4 7.0 ng/mL Absent 
5 9.5 ng/mL Present 
6 15.1 ng/mL Present 
7 15.1 ng/mL Absent 
8 24.8 ng/mL Present 

Abbreviation: ID, identification. 
 
There are seven distinct values for eight subjects. The investigator should count the number of subjects 
who would fall into the four categories (true positive [TP], true negative [TN], FP, and false negative 
[FN]) depending on where one imagines the cutoff for diagnosis to be placed. With seven distinct values, 
there are six intervals to examine in addition to the two outer intervals (below 1.6 and above 24.8 
ng/mL in Table 1). Once the frequencies are known for those four categories, the sensitivity and 
specificity (or 1 − specificity) can be obtained. This expansion of the dataset is illustrated in Table 2.  
 
Table 2. Computation of Clinical Performance Measures for Assay X 

Assay X  
(cutoff concentration, 

ng/mL) TP TN FP FN Sensitivity Specificity 1 − Specificity 
   Cutoff < 1.6  4 0 4 0 100% 0% 100%

1.6–2.1  4 1 3 0 100% 25% 75%
2.1–6.4  4 2 2 0 100% 50% 50%
6.4–7.0  3 2 2 1 75% 50% 50%
7.0−9.5  3 3 1 1 75%* 75%* 25%*

9.5–15.1  2 3 1 2 50% 75% 25%
15.1–24.8  1 4 0 3 25% 100% 0%

              Cutoff > 24.8  0 4 0 4 0% 100% 0%
* See text for explanation. 
 
The first row records the fact that, if a concentration < 1.6 ng/mL were chosen as the cutoff, then all eight 
subjects would be considered “positive,” so the estimated sensitivity would be 100% and specificity 
would be 0%. For each of the subsequent rows in Table 2, subjects are defined as “positive” if they have 
assay concentrations above a cutoff that one imagines to be chosen between the concentration of the 
present row and that of the next. For instance, the *-marked percentages refer to any cutoff > 7.0 but < 9.5 
ng/mL. If one of these values itself is chosen as the cutoff, it is for the user to decide to which of the 
neighboring intervals it belongs. See Section 6.1.2.2. 
 
This leaves the investigator with eight pairs of numbers (sensitivity and [1 − specificity]) that can be 
plotted. Once these points are plotted, the empirical ROC plot is generated by connecting the points. 
Various options exist regarding how the plot can be drawn (eg, smooth, piecewise linear, step function), 
according to personal preferences and preferred small sample properties. For the present illustration, 
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however, the data points will be connected in a piecewise linear manner (ie, the eight observations are 
taken completely literally). This allows the ROC graph to be drawn (see Figure 2), but a shortcut exists. 
First, sort the subjects in order of their laboratory test results from low on the left to high on the right, 
regardless of their categorization (see Figure 3). The simple sketch in Figure 3 then holds all the 
information needed for drawing the ROC, and the user may go directly from the raw data to a sketch of 
this kind, bypassing the detailed tabulation of Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. ROC Curve Constructed Using the Dataset in Table 1 (with underlying measurement 
marked on each step)  
 

 
Figure 3. Auxiliary Sketch for Quick Construction of the ROC by Hand 
 
To use the data in Figure 3 in this way, move a pointer (cutoff) from left to right starting to the left of all 
the data points. At each space between subjects, determine the proportion of affected subjects that are to 
the right of the cutoff (TP) and the proportion of unaffected that are to the right of the cutoff (FP). Plot 
these points on the graph with TPF on the y-axis and FPF on the x-axis.c The first ROC point is by 
definition (1.0, 1.0) in the upper right-hand corner of the graph, because all affected and all unaffected 
subjects are to the right of the cutoff. If the laboratory test is a good indicator of disease, the first set of 

                                                      
c The document development committee has chosen the most common way to plot an ROC curve. Some investigators plot 
sensitivity vs specificity, or FPF vs FNF, to improve clarity. The decision regarding how to draw the plot depends upon the type 
of data and personal preferences.  

ng/mL 

  24.8

15.1 1.6 

Disease absent 

Disease present 

False-positive fraction (1 – Specificity)
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subjects selected by the cutoff will be only unaffected subjects, which means the TPF will remain 1.0 
while the FPF will begin to decrease. This will appear on the ROC curve as a straight line moving 
horizontally leftward from the (1.0, 1.0) point. Eventually, some affected subjects will appear to the left 
of the cutoff and the ROC curve will start to bend downward to the left. Again, if the laboratory test is a 
good indicator of disease, at some point only unaffected subjects will remain to the right of the pointer. 
This is where the ROC curve will hit the y-axis, because FP has reached 0.0 and cannot go lower. If this 
exercise were to continue, the ROC trajectory would move vertically down the y-axis until, by definition, 
it reaches the point (0.0, 0.0) when all subjects (both affected and unaffected) are to the left of the cutoff.  
 
In the example, the size of each horizontal step is 1/4 = 0.25 because there are four unaffected individuals. 
The vertical step size also happens to be 1/4 because there are also four affected individuals. At 15.1 
ng/mL (see Tables 1 and 2 and Figure 3), there are “tied” measurements, and a horizontal step coinciding 
with a vertical step forms a slanting line segment.  
 
The resulting ROC curve is given in Figure 2. The reader should note the following: (1) moving through 
the points from left to right in Figure 3 corresponds to moving from top to bottom in Table 2 and from 
upper right to lower left in the ROC diagram in Figure 2; (2) each line segment of the ROC trajectory 
represents a particular observed concentration value; and (3) their junction points represent intervals on 
the ng/mL scale. 
 
Note, in Figure 2, that if Assay X were uninformative, it would provide no discrimination between those 
with and without the disease (ie, it would be no better than chance). The AUC can be used to describe 
how informative a test is. This technique is covered in Section 7.2, and the AUC results from Example 1 
are provided in Section 7.2.1. The area under the dotted diagonal is 0.5, so, to be useful, a test must 
produce an AUC substantially > 0.5. 
 
6.1.2.2 Decision Thresholds 
 
One can use ROC curves to select the appropriate medical decision level, depending upon the medical 
situation and the clinical setting. In the ROC curve, the various combinations of sensitivity and specificity 
possible for the test in a given setting are readily apparent. Also apparent, then, are the tradeoffs inherent 
in varying the decision threshold for that test. As the decision level changes, sensitivity improves at the 
expense of specificity, or vice versa. This can be observed directly from the plot. Note that the decision 
thresholds, though known, are not part of the plot. However, selected decision thresholds can be displayed 
at the point on the plot where the corresponding sensitivity and specificity appear. 
 
When a decision threshold is chosen, the user must decide the neighboring interval in which it should 
reside, ie, the cut is to be made “just to the left of” or “just to the right of” the chosen value.  
 
A number of mathematical strategies exist for deciding on a cutoff level to use in making decisions. One 
strategy attempts to minimize the distance (in a suitable sense) to the upper left corner of the graph (the 
point [0.0, 1.0] in the plot), representing a perfect test (see Figure 6). Another maximizes the sum of 
sensitivity and specificity. For Example 1, this would provide two cutoff levels. These criteria, while 
objectively providing cutoff options, do not take into account the clinical utility of the test or the costs 
associated with a decision.  
 
Such costs, however, are a major concern when the clinician is faced with treatment decisions. The 
difficulty in quantifying the risks and costs of incorrect diagnoses often precludes the development of a 
cost function that can be used to derive an “optimum” cutoff. In this case, the responsibility for deciding 
the relevant tradeoff in clinical performance rests squarely with the clinician, after careful consideration 
of the benefits or detriments associated with positive or negative diagnoses. For example, suppose a 
subject presents with signs and symptoms of a myocardial infarction. A false-positive result would result 
in the administration of antithrombolytic drugs, risking hemorrhagic stroke. On the other hand, an FN 
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result would allow the damage to the heart to progress, causing more severe heart damage and possibly 
death. The tradeoff to be made here is clearly outside the responsibility and expertise of the statistician or 
the test vendor and must be made by the clinician.  
 
One can minimize FN results by keeping the sensitivity at 100%. Usually, one needs to confirm the 
positive results because one has sacrificed specificity for sensitivity. D-dimer testing for venous 
thromboembolism is a case in point. Negative subjects are sent home, whereas positive subjects are sent 
to radiology for more accurate testing. The physician wants high probability that a negative test result can 
be trusted in order to comfortably send the patient home. An FN test could result in a patient’s dying at 
home. An FP result will be correctly identified by the radiological examination, so the only cost is the 
extra use of hospital resources before discharging the patient home. 
 
In contrast, consider human immunodeficiency virus testing. An FP test could result in antiviral therapy 
with medications that could have adverse effects, including toxicity to the kidneys, liver, and pancreas, as 
well as lipid profile changes that could result in cardiovascular disease. An FN result would likely be 
picked up later as the subject’s T-cell count would decrease before the disease progressed further. 
 
Similar considerations apply to clinical situations with three or more management options; hence, two or 
more cutoff points to be chosen on the ROC curve. Think of a decision problem involving not only a 
“positive” range (“treat as affected”) and a “negative” range (“treat as unaffected”), but also a middle 
range in which the patient is routed to further, possibly invasive, testing. Here, overall diagnostic 
performance is determined not only by the ROC configuration, but obviously also by the properties of the 
second-stage diagnostic tools; details of this scenario are beyond the scope of the present text. (Note that 
this three-option situation is different from a three-category clinical problem involving subjects belonging 
to three diagnostic categories; the latter would call for a three-dimensional ROC diagram because the 
ordinary ROC diagram would be of little help.) Situations calling for more than one cutoff point25 will not 
be discussed further.  
 
Because TPF and FPF are calculated entirely separately, using the test results from two different 
subgroups of persons (affected and unaffected, respectively), the ROC curve is independent of the 
prevalence in the sample of the disease or condition of interest. However, as mentioned above, the TPFs 
and FPFs, and thus the ROC curve, are still influenced by the type of subjects (spectrum effect) included 
in the sample.  
 
Although ROC curves are useful in determining the threshold for the test and to understand what happens 
when this threshold is changed, comparing AUCs to compare tests may ignore clinical consequences. 
AUC is a measure of discrimination and not necessarily a measure of diagnostic accuracy of the test. Two 
tests with the same AUC may not have the same clinical consequences even though all points on the 
curve are considered equivalent; however, they are not necessarily “clinically” equivalent. 
 
6.1.3 Sample Selection Considerations in Establishing Decision Levels 
 
In the example in Figure 4, discrimination was almost perfect, with nearly no overlap between the two 
samples of measurements (and the sample sizes were large enough to indicate that this was not just a 
lucky coincidence). When this happens, it is typically because there is a wide open concentration interval 
with nearly no observations between the unaffected and the affected populations. Provided that the data 
reflect the composition of a realistic target population, it means that sensitivity and specificity will be 
close to 100%, no matter how the cutoff is chosen within that open concentration interval.  
 
Note that, other than the near-perfect discrimination, the shape of the ROC is difficult to discern in Figure 
4. It is difficult to visually compare two well-performing tests. In this case, it may be useful to plot the 
false-negative fraction (FNF) (1 − sensitivity) on the vertical axis, and use a log-log scale. Furthermore, 
some tests involve the choice of parameters, eg, an algorithm that combines several test results to make a 
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clinical prediction. In this case, the parameters may be optimized based on the AUC. Optimization 
involves observing small changes in the target quantity. This is computationally more stable when the 
quantity is small, as with the plot in Figure 2, than when near unity, as with the usual AUC. 
 
In an additional ROC study, one could sample the population of interest intentionally including 
nonextreme cases as well as extreme cases, as long as they can be properly diagnosed by the reference 
test (gold standard) in order to further refine where the cutoff point should be set within the wide open 
concentration interval. 
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Figure 4. Antibody Test in a Target Population (n = 127, AUC = 0.977)  
 
6.2 Generating the Receiver Operating Characteristic Curve: Ties 
 
Usually, clinical data occur in one of two forms: discrete or continuous. Most clinical laboratory data are 
continuous, being generated from a measuring device with sufficient resolution to provide observations 
on a continuum. Measurements of electrolyte, therapeutic drug, hormone, enzyme, and tumor marker 
concentrations are essentially continuous. As in Example 1 above, when there are ties in continuous data 
at an Assay X concentration of 15.1 ng/mL, both the TPF and the FPF change simultaneously, resulting in 
a point that is displaced both horizontally and vertically from the last point. Connecting such adjacent 
points produces diagonal (nonhorizontal and nonvertical) lines on the plot, as seen in Figure 2 in Section 
6.1.2.1. Slanting segments in the ROC curve, then, indicate ties.  
 
Urinalysis dipstick results, on the other hand, are discrete data, as are rapid pregnancy testing devices, 
which give positive/negative results. Scales in diagnostic imaging also generally provide discrete data 
with rating categories such as “definitely affected,” “presumed affected,” “equivocal,” “presumed 
unaffected,” and “definitely unaffected.” In this case, the ROC will consist of five line segments, all of 
which will typically be slanting because even the bins labeled “definitely affected” or “unaffected” will 
end up containing a few misdiagnosed cases. A binary test (target condition present or absent) provides 
just two line segments connecting (0, 0) and (1, 1) to the test’s (sensitivity, 1 − specificity) point. Further 
discussion of discrete test results26 is beyond the scope of this guideline. 
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6.3 Construction of the Receiver Operating Characteristic Curve When the 
Quantification Range Is Restricted   
 
ROC curves extend “corner to corner,” that is, from (0, 0), or the corner of the square plotting region 
representing 0% sensitivity and 100% specificity, to the diagonally opposite corner, (1,1), which 
represents the other extreme, namely 100% sensitivity and 0% specificity. Frequently, however, there is a 
measuring interval at the lower end of the scale below which it is considered inadvisable to trust the 
number produced (see CLSI document EP1727). The higher end of the test interval is usually not an issue 
because the sample being tested can often be diluted to be within the assay interval. Because no such 
adjustment is possible for the “low” interval, all persons in this low interval must be treated as a group. 
For example, in the case of an interval “below the limit of quantitation” (see Figure 5), which is also the 
affected end of the scale, suppose 24% of affected and also 3% of unaffected persons have a value in that 
low interval. In this case, the first part of the ROC curve is a line segment from (0, 0) to (0.03, 0.24); for 
explanation, it could simply be labeled “low.” The line is fairly steep in this example (slope = 8), 
reflecting the fact that a “low” result is fairly good evidence of disease. In fact, whenever this line 
segment has a slope > 45 degrees, it implies that having a measurand level below quantitation is not an 
uninformative test result, but speaks in favor of the target disease. “High” results may have to be treated 
in an analogous manner. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. ROC for a Moderately Discriminative Quantitative Test. A fair proportion of the diseased 
(24%) have values below (accurate) determination. Just 3% of the nondiseased also have values below 
(accurate) determination. The graph serves to illustrate that values below determination must be treated 
on a par with any other reportable laboratory result. The point (0.03, 0.24) corresponds to the lower limit 
of determination. The dashed line below the asterisk in Figure 5 represents the entire range below 
determination (limit of quantitation) ie, it represents the (useful) information the clinician obtains when 
the laboratory replies “below determination” (and it reveals how common this reply will be).   
 
7 Interpretation 
 
Two different frameworks can be used to interpret ROC curves. First, the plot itself can be used to find 
the sensitivity-specificity pair that will best meet the needs of the clinical problem being addressed. 
Second, an overall measure of diagnostic accuracy (ie, AUC) can be assessed for any ROC curve. Within 
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both of these frameworks, a single plot can be interpreted by itself. However, each framework also lends 
itself to comparing curves and the tests that underlie them. 
 
7.1 Relating the Receiver Operating Characteristic Curve to Sensitivity and Specificity 

 
7.1.1 Using a Receiver Operating Characteristic Curve to Determine a Decision Level 
 
When a sensitivity-specificity pair is determined from an ROC curve, the underlying data table used to 
generate the plot will also specify the decision level that generated that pair. A decision level should be 
chosen based on the intended use of the test and/or with respect to the type of device. Some devices may 
require unique approaches. One common way to select such a sensitivity-specificity pair is to find the 
point on the ROC curve that is, in a suitable sense, closest to the upper left corner. This optimizes 
sensitivity and specificity. Often this can be achieved by drawing a line from the lower right to the upper 
left and finding the point of intersection with the ROC plot, as in Figure 6. By referring to Table 2 in 
Section 6.1.2.1, one sees that this point corresponds to a decision level being chosen anywhere from 7.0 
to just below 9.5 ng/mL, which results in sensitivity and specificity that are both 0.75. Note that this 
method does not account for the relative costs of FNs and FPs. However, further discussion of this topic 
is beyond the scope of EP24.  
 

 
Figure 6. Example of a Constructed ROC Plot 
 
7.1.2 Using Sensitivity-Specificity Pairs to Compare Receiver Operating Characteristic Curves  
 
Tests can be compared to one another at a single, observed or theoretical, sensitivity or specificity.28-31 
The closeness of the ROC curve to the upper left corner is commonly used to determine how 
discriminating the test is as a diagnostic test and is often used (as in Figure 6) to compare two diagnostic 
tools. Using this criterion, Figure 7 shows that Test A is more discriminating than Test B because its 
curve lies above the curve of Test B across the graph’s domain. Figure 8, on the other hand, shows two 
diagnostic tests that appear similar in discriminating properties but differ in their sensitivities and 

False-positive fraction (1 – Specificity)
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specificities at different decision levels, except at the point where the two curves cross. Test A shows 
greater sensitivity than Test B at high specificity, but Test B shows greater sensitivity than Test A at 
lower specificity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Test A Is Superior to Test B by Any Criterion (see Figures 8 and 9) 
 

Note that the ROC curves in Figures 7, 9, and 10 do not show the curve continuing down to the (0, 0) 
point. Even though this line segment is not shown, such a continuation is assumed, by definition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Test A Is Superior to Test B Only When a High Specificity Is Required  
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One may not always want to compare tests based on closeness to the upper left corner. An alternative 
approach would be to fix the sensitivity or specificity at a predetermined level. For the purpose of ruling 
out serious pathology in a patient with unexplained symptoms, one may ensure a low incidence of FNs by 
specifying a sensitivity value and examining the corresponding specificity. In Figure 9, at a 
predetermined sensitivity of 0.80, Test A has a much higher specificity than Test B. Conversely, one may 
ensure a low incidence of FPs by preselecting a specificity and then examining the corresponding 
sensitivity. In Figure 10, at a preselected specificity of 0.90, Test A has a much higher sensitivity than 
Test B. 
 

 
Figure 9. Given the Sensitivity of 0.80, Test A Has Higher Specificity  
 

 
Figure 10. Given the Specificity of 0.90, Test A Has Higher Sensitivity  
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One needs to pay particular attention to the curves when comparing two or more tests in situations in 
which the curves cross two or more times. Depending on the purpose of the test, one may choose the test 
that maximizes either sensitivity or specificity.  
 
7.1.3 Sample Size for Sensitivity and Specificity  
 
To determine the sample size to estimate a single test’s sensitivity or specificity, the following formulas 
(3) and (4) are generally used.32 Let nD represent the number of required subjects with disease and Dn  
represent the number of required subjects without disease.  
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where L is the desired width of one half of the confidence interval (CI) for either sensitivity or specificity, 
G(1 − α/2) is the 1 − α/2 percentile of the standard normal distribution and α is the desired confidence level 
of the estimate. These equations can be used when the decision threshold is prespecified. 
 
Table 3 shows some examples of sample size estimates using a 95% CI (α = 0.05) and other parameter 
values that might typically be used. 
 
Table 3. Sample Sizes Required to Obtain Desired Precision 

 
 

 

 

 

 

 

 

 

 

 

 

 

* Sample size calculations are rounded up to the next whole number. 
 
The above equations are based on a normal approximation of the binomial distribution, an assumption 
that breaks down as TPF or FPF approaches 1.0. In addition, as the sample sizes fall below those shown 
above, the results of these equations often no longer match the results derived using an exact binomial 
calculation. An alternative approach to sample size calculation requires estimates of expected and 
minimally acceptable TPF or FPF.33 
 
7.2 Area Under a Receiver Operating Characteristic Curve  
 
One common measure to quantify the diagnostic accuracy of a laboratory test with a single number is the 
AUC. Values range from 1.0 (perfect separation of the test values of the two groups with no 
misclassification) down to zero (theoretically, at least; perfect separation but 100% misclassification). 
When there is no diagnostic information at all (ie, the test results for the two populations have identical 
distributions and the ROC curve runs along the diagonal), then the area is 0.5. All tests of practical value 
have areas well above this. The main attraction of the area calculation is that it does not focus on a 

TPF or FPF L n* 
0.8 0.05 246 

0.85 0.05 196 
0.9 0.05 139 

0.95 0.05 73 
0.7 0.1 81 

0.75 0.1 73 
0.8 0.1 62 

0.85 0.1 49 
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particular portion of the curve, such as the region closest to the upper left corner or the sensitivity at some 
chosen specificity, but reflects the entire curve. 
 
7.2.1 Measuring the Area Under the Curve 
 
The statistician readily recognizes the ROC area as the Mann-Whitney version of the nonparametric 
two-sample statistic34,35 introduced by the chemist Frank Wilcoxon. An area of 0.8, for example, means 
that a randomly selected person from the affected group has a laboratory test value higher (when the 
affected group tends to have higher test values than the unaffected group) or lower (when the affected 
group tends to have lower test values than the unaffected group) than that for a randomly chosen person 
from the unaffected group 80% of the time. The relation between AUC for an ROC curve and rank-sum 
statistics is discussed in Appendix C. 
 
When there are no ties between the affected and unaffected groups, this area is easily computed from the 
curve as the sum of the rectangular areas under this graph. Analytical formulas to calculate the area 
appear in reports by Bamber34 and Hanley and McNeil.35 Alternatively, the area can be obtained from the 
Wilcoxon rank-sum statistic.36 
 
Parametric approaches to calculating area (ie, those employing some model for fitting a curve) have also 
been described. Both parametric and nonparametric methods are discussed and compared in published 
reviews.2,37 
 
When using summary indices such as AUC, sensitivity, or specificity, there is a loss of information. 
Therefore, one should always visually examine the ROC curve itself, as well. Example 1 has been used to 
generate an ROC curve (see Figure 2) and to determine cutoff levels (see Figure 6). The AUC measured 
from Example 1 is shown in Table 4. 
 
Table 4. Area Assessment in Example 1 

Assay X AUC 95% CI SE z p Patient Diagnosis = Present
Concentration 
(ng/mL)  0.78 0.42 to 1.00 0.182 1.54 0.0614 Have higher values 
  
      H0: AUC ≤ 0.5. H1: AUC > 0.5.   

 
In Table 4, not only is the AUC listed (0.78), but also an approximate 95% CI (0.42 to 1.00) is given. This 
range is quite wide because of the small sample size and encompasses 0.5. Therefore, the possibility that 
Assay X is no better than chance (0.5) cannot be excluded (one-sided approximate p = 0.06).  
 
The AUC measurement can also be seen as the average sensitivity over all specificities (the range of 
specificities is 1.0) or the average specificity over all sensitivities (the range of sensitivities is 1.0). The 
average sensitivity can also be determined over a defined interval of specificities by computing the partial 
AUC and dividing by the width of this interval of specificities, as shown in Figure 11. In a similar 
fashion, the average specificity can be determined over a defined range of sensitivities, as shown in 
Figure 12. 
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Figure 11. Average Sensitivity Over Specificity 
Interval From 0.5 to 0.75 

Figure 12. Average Specificity Over Sensitivity 
Interval From 0.5 to 1.0  
 

Such average measurements would be appropriate in cases in which only a defined range of accuracy 
(sensitivity or specificity) is clinically acceptable. 
 
7.2.2 Comparing the Area Under the Curve of Two Tests 
 
Direct statistical comparison of multiple diagnostic tests is common in clinical laboratories. Usually, two 
(or more) tests are performed on the same subjects (or specimens), as in a split-specimen comparison. 
This is often called “paired design.” 
 
A global approach is to compare entire ROC curves by using an overall measure, such as AUC. This can 
be performed either nonparametrically or parametrically, ie, with or without a model that supplies, and 
constrains, the shape of distribution(s) of the measurand. This is especially attractive to laboratories 
because the comparison does not rely on the selection of a particular decision threshold. However, the 
user should always inspect the ROC plot visually when comparing tests, rather than rely only on summary 
measures that condense all the information into a single number. A good example is presented in Figure 8 
in Section 7.1.2. In this example, two tests have similar AUCs, but one is skewed to the right while the 
other is skewed to the left, which makes Test A more sensitive than Test B at high degrees of specificity. 
 
A seemingly natural choice of statistics for comparing two AUCs is the difference in the AUCs divided 
by the standard error (SE) of the difference. The null hypothesis, H0: AUC1 = AUC2, is tested by 
comparing the value of z (see equation 5, below) with a standard normal distribution33,38 because the z 
statistic has approximately a standard normal distribution. If |z| is > 1.96, then the two AUCs are 
significantly different at a significance level of α = 0.05.  
 

z = 
1 2

1 2( )
AUC AUC

Var AUC AUC
−
−

 = 
1 2

1 2( )
AUC AUC

SE AUC AUC
−
−

     (5) 

False-positive fraction (1 – Specificity) False-positive fraction (1 – Specificity) 
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7.2.2.1 Calculating Test Statistics 
 
The AUC as well as its SE can be calculated using either parametric or nonparametric methods. One 
parametric method is based on the binormal assumption,d,39 and the nonparametric method is based on 
Mann-Whitney U statistics.35 
 
If the samples used to generate the two ROC curves are independent, then the denominator can be 
obtained by taking the square root of the sum of the two variances. However, if the samples are not 
considered independent, such as in a paired design, the SE of the differences should include an additional 
term for correlation because the two AUCs will be correlated.  
 
7.2.2.2 Comparing Correlated Areas Under the Curve 
 
A method for comparing two AUCs (ie, testing for equality) in a paired design is discussed by Hanley and 
McNeil.38 This method uses the Dorfman and Alf34 approach to calculate the AUC as well as its SE. 
There is also a nonparametric approach to compare two AUCs in a paired design (DeLong et al.).40 
 
The test statistic for a paired design has an additional term that includes a correlation coefficient, r. 
 

z = 
1 2

1 2( )
AUC AUC

Var AUC AUC
−
−

= 1 2

1 2 1 2( ) ( ) 2 ( ) ( )
AUC AUC

Var AUC Var AUC rSE AUC SE AUC
−

+ −
      (6) 

 
Table 5 lists the correlation coefficients, r, for different values of average correlation and average area. 
The row value is obtained by taking an average of two correlations, (rN + rA) / 2. Here, rN is a correlation 
coefficient from unaffected subjects by the two different tests, and rA is obtained from affected subjects. 
The column value is an average of the two AUCs, (A1 + A2) / 2. The degree of correlation depends on the 
types of diagnostic tests. However, the correlation is likely to be positive because the specimens are 
collected from the same subjects. The larger the correlation between the two diagnostic tests, the more 
powerful (sensitive) the statistical comparison becomes and the more likely it is to declare the difference 
as statistically significant. Hanley and McNeil38 have discussed this in terms of sample size and statistical 
power and suggested a table of reasonable r values (ie, Table 5). A calculated example involving real data 
is given in Appendix D. 
 
 
 

                                                      
d The binormal assumption states that the measurand, when expressed on a suitable scale (with transformation in some cases), has 
the following property: in each of the two populations (with disease, without disease), its distribution is normal (gaussian); both 
the means and the variances are allowed to differ. 
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Table 5. Correlation Coefficients Between Two ROC Areas.* From Hanley JA, McNeil BJ. A method 
of comparing the areas under receiver operating characteristic curves derived from the same cases. 
Radiology. 1983;148(3):839-843. Used with permission. 

Average 
Correlation 

Between 
Ratings† 

 
 

Average Area‡ 
0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 
0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 
0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.03 0.02 
0.08 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.04 0.03 
0.10 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.06 0.04 
0.12 0.11 0.11 0.11 0.10 0.10 0.10 0.09 0.09 0.08 0.08 0.07 0.05 
0.14 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.10 0.09 0.08 0.06 
0.16 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.12 0.11 0.11 0.09 0.07 
0.18 0.16 0.16 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.12 0.11 0.09 
0.20 0.18 0.18 0.18 0.17 0.17 0.17 0.16 0.15 0.15 0.14 0.12 0.10 
0.22 0.20 0.20 0.19 0.19 0.19 0.18 0.18 0.17 0.16 0.15 0.14 0.11 
0.24 0.22 0.22 0.21 0.21 0.21 0.20 0.19 0.19 0.18 0.17 0.15 0.12 
0.26 0.24 0.23 0.23 0.23 0.22 0.22 0.21 0.20 0.19 0.18 0.16 0.13 
0.28 0.26 0.25 0.25 0.25 0.24 0.24 0.23 0.22 0.21 0.20 0.18 0.15 
0.30 0.27 0.27 0.27 0.26 0.26 0.25 0.25 0.24 0.23 0.21 0.19 0.16 
0.32 0.29 0.29 0.29 0.28 0.28 0.27 0.26 0.26 0.24 0.23 0.21 0.18 
0.34 0.31 0.31 0.31 0.30 0.30 0.29 0.28 0.27 0.26 0.25 0.23 0.19 
0.36 0.33 0.33 0.32 0.32 0.31 0.31 0.30 0.29 0.28 0.26 0.24 0.21 
0.38 0.35 0.35 0.34 0.34 0.33 0.33 0.32 0.31 0.30 0.28 0.26 0.22 
0.40 0.37 0.37 0.36 0.36 0.35 0.35 0.34 0.33 0.32 0.30 0.28 0.24 
0.42 0.39 0.39 0.38 0.38 0.37 0.36 0.36 0.35 0.33 0.32 0.29 0.25 
0.44 0.41 0.40 0.40 0.40 0.39 0.38 0.38 0.37 0.35 0.34 0.31 0.27 
0.46 0.43 0.42 0.42 0.42 0.41 0.40 0.39 0.38 0.37 0.35 0.33 0.29 
0.48 0.45 0.44 0.44 0.43 0.43 0.42 0.41 0.40 0.39 0.37 0.35 0.30 
0.50 0.47 0.46 0.46 0.45 0.45 0.44 0.43 0.42 0.41 0.39 0.37 0.32 
0.52 0.49 0.48 0.48 0.47 0.47 0.46 0.45 0.44 0.43 0.41 0.39 0.34 
0.54 0.51 0.50 0.50 0.49 0.49 0.48 0.47 0.46 0.45 0.43 0.41 0.36 
0.56 0.53 0.52 0.52 0.51 0.51 0.50 0.49 0.48 0.47 0.45 0.43 0.38 
0.58 0.55 0.54 0.54 0.53 0.53 0.52 0.51 0.50 0.49 0.47 0.45 0.40 
0.60 0.57 0.56 0.56 0.55 0.55 0.54 0.53 0.52 0.51 0.49 0.47 0.42 
0.62 0.59 0.58 0.58 0.57 0.57 0.56 0.55 0.54 0.53 0.51 0.49 0.45 
0.64 0.61 0.60 0.60 0.59 0.59 0.58 0.58 0.57 0.55 0.54 0.51 0.47 
0.66 0.63 0.62 0.62 0.62 0.61 0.60 0.60 0.59 0.57 0.56 0.53 0.49 
0.68 0.65 0.64 0.64 0.64 0.63 0.62 0.62 0.61 0.60 0.58 0.56 0.51 
0.70 0.67 0.66 0.66 0.66 0.65 0.65 0.64 0.63 0.62 0.60 0.58 0.54 
0.72 0.69 0.69 0.68 0.68 0.67 0.67 0.66 0.65 0.64 0.63 0.60 0.56 
0.74 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.67 0.66 0.65 0.63 0.59 
0.76 0.73 0.73 0.72 0.72 0.72 0.71 0.71 0.70 0.69 0.67 0.65 0.61 
0.78 0.75 0.75 0.75 0.74 0.74 0.73 0.73 0.72 0.71 0.70 0.68 0.64 
0.80 0.77 0.77 0.77 0.76 0.76 0.76 0.75 0.74 0.73 0.72 0.70 0.67 
0.82 0.79 0.79 0.79 0.79 0.78 0.78 0.77 0.77 0.76 0.75 0.73 0.70 
0.84 0.82 0.81 0.81 0.81 0.81 0.80 0.80 0.79 0.78 0.77 0.76 0.73 
0.86 0.84 0.84 0.83 0.83 0.83 0.82 0.82 0.81 0.81 0.80 0.78 0.75 
0.88 0.86 0.86 0.86 0.85 0.85 0.85 0.84 0.84 0.83 0.82 0.81 0.79 
0.90 0.88 0.88 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.85 0.84 0.82 

* Correlation coefficient r between two ROC areas A1 and A2 as a function of the average correlation between ratings (rows) and 
average area (columns). 

† (rN + rA) / 2, where rN = correlation coefficient from unaffected subjects by the two tests; rA = correlation coefficient from affected 
subjects by the two tests. 
‡ (A1 + A2) / 2. 
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7.2.3 Comparing Average Sensitivities or Specificities: Partial Area Under the Curve Approach 
 
The AUC is not always a useful summary statistic when one wants to compare two curves. The most 
obvious example is when two ROC curves cross but have equal AUCs, as in Figure 8. The fact that the 
curves cross tells us that one test performs better than the other for certain clinical settings, and vice versa 
for other clinical settings. In cases such as these, clinical requirements should influence how the tests are 
compared. For example, if one must choose between two tests and their ROC curves cross but the AUCs 
are nearly equal, one might consider comparing test sensitivities at only high levels of specificity. One 
approach would be to decide what levels of specificity would be acceptable and then compare the tests’ 
average sensitivities restricted to that specificity (or FP) interval.  
 
Therefore, the average sensitivities for two tests can be compared, but only over identical FPF intervals, 
as seen in Figure 11 in Section 7.2.1. Conversely, two tests can be compared by using average specificity 
over a selected sensitivity interval, as seen in Figure 12 in Section 7.2.1. In either case (see the example in 
Figure 8 in Section 7.1.2), two tests could be ranked differently depending on which intervals served as 
the basis for their comparison.  
 
7.2.4 Sample Size for Evaluating Area Under the Curve  
 
Two classic references for determining sample size requirements for ROC analysis are the papers by 
Hanley and McNeil.35,38 The techniques described in these papers cover three different cases: the one-
sample case, the two-sample case with independent samples, and the two-sample case with both 
measurements performed on the same subjects (as in a paired design).  
 
7.2.4.1 One-Sample Case 
 
When the investigator is interested only in the diagnostic accuracy of a single device, two approaches can 
be taken to determine a sample size. One is to determine the sample size required for a specified width on 
the CI for the AUC. Alternatively, in a preliminary evaluation of the test, one may want to determine the 
sample size necessary to obtain statistical significance for testing that the AUC is > 0.50. 
 
The case of a specified CI width will be addressed first. Assume that: 
 

nA = the number of affected subjects, and 
nN = the number of unaffected subjects. 
 

Using an anticipated value for AUC, the quantities Q1 and Q2 are obtained, as follows: 
 

)2(1 AUC
AUCQ −= , and        (7) 

)1(
2 2

2 AUC
AUCQ += .        (8) 

 
Now, the SE of the AUC is given by36:  
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Using a realistic trial value for the two n’s, one can vary the n’s until obtaining an acceptable CI width. If 
one has data from a pilot study already analyzed, a simpler method is to realize that the SEs vary 
inversely with the square root of the sample size, so that if:  
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n1 = the total sample size from the pilot study,  
)( 1AUCSE  = the SE of the AUC from the pilot study,  

n2 = the total sample size for the proposed study, and 
)( 2AUCSE  = the desired SE of the AUC for the proposed study,  

 
then, under the condition that the prevalence remains the same from the pilot study population to the 
population in the proposed study, n2 can be computed simply by solving the following: 
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In the second approach to determining the sample size, the investigator’s focus is on the hypothesis test 
that demonstrates the efficacy of the diagnostic assay. A noninformative test (ie, one that is not different 
from random choice) would have an AUC of 0.50. Thus, the hypothesis to be tested is AUC = 0.50, vs the 
one-sided alternative, AUC >0.50. The condition that must be satisfied to meet the above conditions is as 
follows: 
 

( ) ( )
,

}{
2

22

δ
ZZAUCSE

n αβ +≥  where        (12) 

 
n = total number of subjects, 
δ = the difference stipulated (hoped for) between the AUC and 0.50, 
Zα = G(1 – α) = the critical value for the (one-sided) hypothesis test at significance level α, and 
Zβ = G(1 – β) = the constant defined by the required power level: 0.84, 1.28, or 1.645 for 80%, 90%, or 
95% power, respectively.41 G here stands for the standard gaussian (normal) cumulative distribution 
function as defined in Section 7.1.3. See equations (3) and (4). 

 
7.2.4.2 Two-Sample Case 
 
The accuracy of two tests can be compared by detecting differences in two AUCs. In the example below, 
the comparison will determine whether either test has a larger AUC than the other and is therefore a two-
sided comparison. A similar example using a one-sided comparison can be found in the paper by McNeil 
and Hanley.29  
 
Let:  AUC1 = the area under the curve for Test 1, which is the predicate or standard against which Test 

2 is to be compared; 
AUC2 = the area under the curve for Test 2, 
Zα = G(1 – α/2) = the critical value for the (two-sided) hypothesis test at significance level α, and 
Zβ = G(1 – β) = the constant defined by the required power level: 0.84, 1.28, or 1.645 for 80%, 
90%, or 95% power, respectively. G here stands for the standard gaussian (normal) cumulative 
distribution function as defined in Section 7.1.3. See equations (3) and (4). 
 

To compute the required sample size, one first chooses realistic tentative values for the two AUCs that 
differ by an amount, δ, that one hopes to be able to document if it exists. One then computes the 
intermediate quantities V1 and V2, given below, namely:  
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Now the sample size required from each of the two tests and from each of the two states (unaffected, 
affected) for a test of significance is n1 = n2 =  
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Savings in sample size can be achieved if the same subjects can be tested with Test 1 and Test 2. The 
savings are related to the level of correlation between the two AUCs. More precisely, 
 

unpairedpaired nrn ⋅−= )1( , where       (16) 
 

nunpaired = the total number of subjects required using two independent samples, 
npaired = the total number of subjects required using paired samples, and  
r = the correlation of the two AUCs, which can be interpolated from Table 5.38 

 
Although the studies used for initial estimates may not exactly match the ultimate protocol for the final 
study, they still provide approximate estimates for the problem at hand. The process of generating sample 
size requirements is always fraught with risk because one needs to provide parameter estimates that are 
unknown, and are the purpose of commissioning the study. Thus, one should be prepared to revise these 
estimates as data are collected that verify or contradict the assumed values used in the computations. For a 
nonparametric approach to variance estimation, applicable to sample size calculation, see DeLong et al.40 
 
8 Application of Receiver Operating Characteristic Curves 
 
The ROC curve is simple, graphical, and easily appreciated visually on a universal scale. It represents 
inherent diagnostic accuracy, which is the discriminating ability over the entire measuring interval of the 
test. It does not require selection of a particular decision threshold because the whole range of possible 
decision thresholds is included. Because the ROC curve is generated independent of prevalence, obtaining 
samples with representative prevalence is not important as long as cases are collected in a nonselective 
fashion. In fact, it is usually preferable to have approximately equal numbers of subjects with both 
conditions. In the resultant curve, both specificity and sensitivity and the tradeoff between them are 
readily accessible.  
 
The properties of ROC curves and functions of ROC curves, such as AUC, permit a number of uses, 
including the following: 
 
• Determining whether a test is better than chance 

 
• Finding an optimal point on the curve for a clinical application 

 
• Judging whether the test is better suited for proving or for disproving disease or target condition 

present (attains a high specificity for reasonable sensitivity or vice versa) 
 

• Assessing diagnostic accuracy  
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• Comparing two tests regardless of the units they use 
 

• Evaluating whether two tests for the same process have the same or dissimilar diagnostic potential 
 
Reference interval studies, as detailed in CLSI document C28,42 have been used to generate cutoff points. 
However, such studies, by their nature, include only one population, so quantification of the tradeoff 
between sensitivity and specificity is unavailable. Such a cutoff only determines a point where results 
from the reference population are unlikely to fall. Such cutoffs do not answer a clinical question with 
regard to a specific medical condition. 
 
The ROC curve compiles much information in a simple construct. This is its strength and leads to the 
many uses detailed above. However, because of this simplification, there are many things ROC curves 
cannot provide. First, the decision threshold and the number of subjects with and without the clinical 
conditions at each point along the curve are lost in the graphical representation. The curve can be 
annotated at selected places if desired, but it is impractical to do so across the entire curve. It is common 
to provide a complete table of the results used to generate the curve. Another option is to use a cumulative 
distribution analysis (CDA) plot, which is a joint depiction of sensitivity and specificity as a function of 
cutoff values.43 More information on CDA plots is provided in Appendix B. 
 
Some common mistakes observed in studies using ROC analysis are failure to provide a CI for the AUC 
to evaluate its margin of error and the lack of a formal hypothesis test when comparing two curves. A 
common incorrect practice is to state that the CIs of the AUCs overlap; however, this is not equivalent to 
a hypothesis test. As with any summary statistic, the AUC must be considered as one part of a 
comprehensive analysis of a candidate diagnostic device or test. Both sensitivity and specificity (and 
hence AUC) can be influenced by case mix, disease severity, and concomitant risk factors for the clinical 
state under consideration. A single ROC and AUC calculation cannot take these influences into account.  
 
As with any statistic, the AUC has its strengths and weaknesses, and it should be used carefully. For 
instance, the algebraic equivalence of the AUC statistic to the Mann-Whitney U and Wilcoxon rank-sum 
test makes it insensitive to the risk level of the subjects being studied. Inclusion of novel risk factors in 
well-functioning risk prediction equations rarely improves the risk stratification to a clinically appreciable 
extent. Even when regression statistics or significance tests suggest a large and indisputable “effect,” 
decision analysis most often shows that the clinical impact will be small. Although the AUC is not, 
strictly speaking, a measure of clinical benefit in the sense of decision analysis, the AUC behaves like 
one, in that it duly portrays the smallness of the impact. Unfortunately, when faced with a large regression 
effect and a minuscule AUC increase, investigators have been inclined to trust the former, leading to the 
frequent claim44-47 that the AUC is unduly insensitive to added diagnostic or prognostic information. The 
claim is false; the AUC should be regarded as trustworthy (“pessimistic but not unduly so”), whereas 
regression output sometimes inspires false hope of clinical gain.  
 
An analogous situation arises when a well-performing diagnostic test is made more informative (eg, by 
reduction of measurement error); even when the reduction is pronounced (and statistically significant), the 
AUC changes little. This fact is illustrated in Appendix A. 
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Appendix A. Effect of Measurement Uncertainty on Receiver Operating 
Characteristic Curves  
 
To properly define the total allowable measurement uncertainty for each measurand, consider its effect on 
the receiver operating characteristic (ROC) curve and on the diagnostic accuracy indices, including the 
area under the ROC curve (AUC). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A1. Comparison of the ROC Curves of Two Diagnostic Tests Measuring the Serum Glucose 
of Two Normally Distributed Populations. The uncertainty of the first test (blue curve) is 0.05 standard 
deviation (SD), while the uncertainty of the second test (orange curve) is 0.50 SD. The graph serves to 
show that, despite the large difference in measurement SD, the curves are virtually indistinguishable. 
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Appendix A. (Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A2. Difference in the Surfaces Under the ROC Curves of Two Diagnostic Tests Measuring 
the Serum Glucose of Two Normally Distributed Populations. The uncertainty of the first test is 0.15 
SD, while the uncertainty of the second test varies from 0.05 SD to 0.50 SD.  
 
Table A1. Explanation of Figures A1 and A2 of the ROC Curves 

 Figure A1 Figure A2 
Unaffected 
population 

Distribution Normal Normal 
Mean 0.00 0.00 
SD 1.00 1.00 

Affected  
population 

Distribution Normal Normal 
Mean 7.00 7.00 
SD 6.40 6.40 

Uncertainty of 
measurement 

First test 0.05 0.05 
Second test 0.50 0.05–0.50 

Difference in the two areas under the curves 
(AUC of the first test − AUC of the second test) 

0.0014 0.0000–0.0014 

 

Difference 

Uncertainty 
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Appendix A. (Continued) 
 
The effect of the measurement error on the AUC has been studied since 1997.1-4 It is possible to compare 
the ROC curves of two diagnostic tests measuring the same measurand5 with different uncertainties of 
measurement.6 For the comparison, the difference in the areas under the respective curves can be used, for 
either the specificity interval (0, 1) or any subinterval of interest.  
 
Figures A1 and A2 illustrate two applications of this approach. Both figures are based on a German 
population including known diabetic subjects, with a bimodal distribution of fasting plasma glucose,7 

assuming binormality. In Figure A1, the ROC plot of a test with an uncertainty of 0.05 SD, which could 
be considered as an example of state-of-the-art performance, is compared with the ROC plot of an 
alternative test with uncertainty that is ten times greater. In Figure A2, the plot shows the difference 
between the areas under the ROC curve of a test with an uncertainty of 0.05 SD and a second test with 
uncertainty that varies from 0.05 SD to 0.50 SD. Table A1 explains the data for the two figures.  
 
Both figures show that the uncertainty of measurement has relatively little effect on the areas under the 
ROC curves of the tests, in accordance with previous findings on the imprecision effects on ROC curves 
of cardiac markers.8 
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Appendix B. Cumulative Distribution Analysis Plots: Their Nature, Construction, 
and Practical Application 
 
Some investigators find cumulative distribution analysis (CDA) plots helpful.  
 
A CDA plot is a joint depiction of sensitivity and specificity as a function of cutoff values.1 It consists of 
two plots in a coordinate space based on values ranging from 0 to 1 (fractiles) or from 0 to 100 (centiles) on 
the vertical axis and, on the horizontal axis, measurand concentrations, or whatever units are appropriate 
to the continuous diagnostic indicator in question. 
 
For comparing two assay methods, the classic receiver operating characteristic (ROC) representation has 
the advantage of requiring just two curves, not the four that would be needed using CDA plots. However, 
the ROC curve achieves this economy of expression by sacrificing information, namely, the 
concentrations associated with its data points (sensitivity and specificity pairs). This loss can be remedied 
by annotating all or some of the nodes in the empirical ROC representation with the cutoff values, but this 
is an awkward solution that causes visual clutter and yields a visually distorted sense of scale for the 
cutoff values. Accordingly, when it is important not to lose sight of analytical characteristics—primarily 
the effective limits of quantitation, but also variance functions—CDA plots can serve as a valuable 
complement to ROC curves in studies of diagnostic accuracy. See Figure B1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abbreviation: IgE, immunoglobulin E. 
Figure B1. Example of a CDA Plot. Quantitative assay for allergen-specific immunoglobulin E with a 
reportable range of 0.35 to 100 kU/L. Results outside this range are plotted in vertical “gutters” left and 
right, with status determined by skin testing. Curves represent empirical smoothings (by the Harrell-Davis 
method) of the cumulative sensitivity and specificity trajectories. 
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Appendix B. (Continued) 
 
In particular, this practice can safeguard against excessive idealization in studies intended to evaluate an 
assay (or compare it to another) in its state of development. An assay’s measuring interval typically 
implies a limit to either the sensitivity or specificity that it can achieve, or limits to both capabilities. In 
the most common scenario, in which values above a given cutoff are construed as positive for the clinical 
state in question, and in which indefinitely high concentrations can be measured under dilution, there may 
be no practical limit to the achievable specificity. 
 
The CDA plot is not simply a method for representing information complementary to that in an ROC 
curve; it is arguably more fundamental, because an (unannotated) ROC curve—and a likelihood ratio 
(LR) plot—can be constructed from a CDA plot, but not vice versa. An ROC curve is, after all, “just a 
plot of the cumulative distribution function of x [a one-dimensional continuous diagnostic indicant] in the 
affected against that of the unaffected subpopulation. The ratio of the corresponding probability densities 
(LR) becomes its local slope.”2 
 
From this perspective, the conceptually natural way to construct an ROC curve is first to build a CDA 
plot, smooth the two trajectories, and determine the sensitivity and specificity pairs from these plots at a 
grid of potential cutoffs. The resulting plot in ROC (or LR) space can be made as smooth as desired by 
increasing the density of the concentration value grid. 
 
This approach can take advantage of well-developed univariate techniques: parametric distribution fitting, 
nonparametric kernel density estimation, local regression methods, and so on. In the study by Ollert et 
al.,3 smoothing was accomplished at this stage by using the Harrell-Davis estimator, which is arguably the 
nonparametric method of choice in clinical chemistry for centile estimation because of its endorsement in 
Statistical Bases of Reference Values in Laboratory Medicine.4 

 
More importantly, by displaying both the experimental observations and the smoothed trajectories in the 
CDA representation, it is possible to judge goodness of fit by eye in a familiar space, taking advantage of 
the laboratorian’s feel for the significance of analytical errors, that is, errors expressed in the assay’s 
native concentration scale. This may well outweigh the (usually) minor loss of efficiency implied by 
combining the sensitivity and specificity information after smoothing—as opposed to smoothing the 
combined sensitivity and specificity results directly (ie, in ROC or LR space). 
 
In summary, CDA plots serve as a valuable complement to traditional ROC and LR plots by maintaining 
contact with the natural analytical measurement characteristics of the assay(s) being evaluated, thus 
helping to prevent unjustifiable ascription of idealized capabilities to the assays as reflected in published 
ROC curves. Furthermore, smooth ROC curves can be constructed nonparametrically by combining 
sensitivity and specificity values read off smoothed CDA trajectories. Curves constructed in this manner 
offer a check on the reasonableness of assumptions underlying model-based ROC curve construction. 
 
References for Appendix B 
 
1  Krouwer JS. Cumulative distribution analysis graphs—an alternative to ROC curves. Clin Chem. 

1987;33(12):2305-2306. 
 
2  Hilden J. The area under the ROC curve and its competitors. Med Decis Making. 1991;11(2):95-101.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Volume 31 EP24-A2
 

©Clinical and Laboratory Standards Institute. All rights reserved. 37

Appendix B. (Continued) 
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Appendix C. Receiver Operating Characteristic Curve Areas and Rank-Sum 
Statistics 
 
There is a close link between the area under the receiver operating characteristic (ROC) curve and the 
probability of concordance (PoC), defined here as the probability that someone affected with the target 
clinical condition will have a more pathological test result than someone without it. It is also known as 
Harrell’s c index. These notions are in turn closely linked to the rank sums employed in the Wilcoxon-
Mann-Whitney test procedure.1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C1. Geometrical Illustration of the Link Between AUC and Rank Tests.2 (Reprinted with 
permission from Hilden J. The area under the ROC curve and its competitors. Med Decis Making. 
1991;11(2):95-101.) 
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Appendix C. (Continued) 
 
In the small dataset of Figure C1, low values denote those affected by the clinical condition. The sample 
comprises five individuals affected by the target clinical condition (D) and 10 unaffected by the target 
clinical condition (non-D), so 50 (5 • 10) D~non-D pairs can be formed. In U = 40 (or 80%) of the 50 
pairs, the D subject has a more “affected” value of measurand x than his non-D counterpart; that is, the 
frequency of concordance is U / (5 • 10) = 0.80. Thus, U = 40, which is the key statistic employed in the 
Mann-Whitney version of the rank test; this defines the frequency of concordance, which in turn is also 
the area under the ROC curve (AUC).  
 
To show this, divide the ROC square into small rectangles whose areas are 1/50 each. One observes that 
there is one rectangle for each of the 50 pairs, 40 below and 10 above the ROC. For instance, the non-D 
observation marked * exceeds four observations in the D group. Therefore, its contribution to the AUC is 
four small rectangles, located along the vertical strip that corresponds to observation *. Conversely, the 
horizontal strip associated with the D case marked ** reflects the fact that nine of the 10 non-D subjects 
had higher x values.  
 
The rank sums employed in Wilcoxon’s version of the test equal U apart from a constant term; therefore, 
all the procedures mentioned here capitalize on the same idea (ie, PoC).  
 
NOTE: For readers with mathematical training, the proof that the area under the population ROC equals 
the PoC is simple. Let f(x) be the density of the unaffected distribution, with cumulative function F(x); the 
analogous notation for the affected population is g(y), G(y). When low values are taken as pathological, 
(F(c), G(c)) is the ROC point generated by choosing cutoff = c. Because the PoC refers to an 
independently sampled (x, y) pair, one has: 
 
 
    PoC = ∫∫x>y g(y)f(x)dydx = ∫x{∫y<x g(y)dy} f(x)dx = ∫G(x)dF(x)  
 
 = ∫(ROC ordinate) d(ROC abscissa) = (area under the ROC).  
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Appendix D. A Receiver Operating Characteristic Curve Comparison Example 
 
Although a step-by-step technique for generating receiver operating characteristic (ROC) curves has been 
presented, it is assumed that most readers will use off-the-shelf software for this task. Example 1, with the 
corresponding data in Table 2, the ROC curve in Figure 2, and the area under the curve (AUC) result in 
Table 4 (in the main text of this guideline), provides an example of a single ROC curve for users against 
which to test such software. The following is an example of a two-sampled paired test that can be 
similarly used. 
 
The two assays considered are low-density lipoprotein (LDL) and oxidized low-density lipoprotein 
(OxLDL). OxLDL is thought to be the active molecule in the process of atherosclerosis, so its proponents 
believe that its serum concentration should provide more accurate risk stratification than the traditional 
LDL assay. Table D1 below lists the unsorted values for diagnosis, OxLDL, and LDL for each patient. 
Table D2 gives the one-sample computations of the AUCs and their respective standard errors (SEs),1 
along with the results associated with a test of significance for the difference in AUCs for the two assays. 
Table D2 provides the results of the test of significance for this difference using the method of Hanley 
and McNeil.2 These computations reflect the formulae given in equations (5) and (6) in Section 7.2.2 and 
equations (7) to (9) in Section 7.2.4 of the main text of the guideline.2 The ROC curves for the two assays 
are illustrated in Figure D1. 
 
Table D1. OxLDL and LDL Assay Values (in U/L) for 50 Subjects  

Diagnosis OxLDL LDL 
0 37 2.1 
0 44 2.35 
0 42 3.91 
0 62 5.4 
0 42 3.31 
0 61 3.9 
0 77 4.38 
0 51 2.85 
0 52 3.67 
0 60 1.48 
0 74 2.6 
0 73 3.25 
0 70 3.76 
0 64 3.5 
0 54 2.66 
0 66 4.45 
0 63 5.27 
0 54 3.57 
0 66 3.74 
0 48 2.78 
0 59 3.15 
0 22 3.01 
1 83 5.88 
1 86 4.05 
1 57 3.75 
1 76 3.21 
1 96 4.11 
1 77 4.15 
1 72 2.31 
1 71 2.57 
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Appendix D. (Continued) 
 
 Table D1. (Continued) 

Diagnosis OxLDL LDL 
1 41 2.6 
1 95 4.22 
1 116 7.55 
1 60 2.74 
1 77 4.57 
1 66 3.51 
1 76 3.08 
1 60 2.95 
1 143 5.71 
1 88 3.92 
1 64 3.38 
1 73 1.29 
1 78 3.71 
1 53 3.22 
1 60 3.4 
1 78 3.4 
1 82 4.03 
1 66 3.09 
1 76 3.47 
1 45 3.57 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D1. ROC Curve for Paired Two-Sample Study (OxLDL and LDL) 
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Appendix D. (Continued) 
 
Table D2. AUC and Summary Statistics1,2 

Test AUC SE 
95% CI for 

AUC Z Hypothesis Test p Value 
OxLDL 0.80 0.062 0.68–0.92 4.83 H0: Area ≤ 0.5. H1: Area >0.5. < 0.0001 
LDL 0.56 0.082 0.40–0.72 0.76 H0: Area ≤ 0.5. H1: Area >0.5. 0.2245 
Difference  0.24 0.075 0.09–0.39 3.16 H0: Difference between areas = 0. 

H1: Difference between areas ≠ 0. 
0.0016 

Abbreviations: AUC, area under the curve; CI, confidence interval; LDL, low-density lipoprotein; OxLDL, oxidized low-density 
lipoprotein; SE, standard error. 
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The Quality Management System Approach 
 
Clinical and Laboratory Standards Institute (CLSI) subscribes to a quality management system approach in the 
development of standards and guidelines, which facilitates project management; defines a document structure via a 
template; and provides a process to identify needed documents. The quality management system approach applies a 
core set of “quality system essentials” (QSEs), basic to any organization, to all operations in any health care 
service’s path of workflow (ie, operational aspects that define how a particular product or service is provided). The 
QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The QSEs 
are as follows:  
 
Organization Personnel Process Management Nonconforming Event Management 
Customer Focus Purchasing and Inventory Documents and Records Assessments 
Facilities and Safety Equipment Information Management Continual Improvement 
 
EP24-A2 addresses the QSE indicated by an “X.” For a description of the other documents listed in the grid, please 
refer to the Related CLSI Reference Materials section on the following page. 
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Related CLSI Reference Materials∗ 
 
C28-A3c Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved 

Guideline—Third Edition (2008). This document contains guidelines for determining reference values and 
reference intervals for quantitative clinical laboratory tests. A CLSI-IFCC joint project. 

  
EP17-A Protocols for Determination of Limits of Detection and Limits of Quantitation; Approved Guideline 

(2004). This document provides guidance for determining the lower limit of detection of clinical laboratory 
methods, for verifying claimed limits, and for the proper use and interpretation of the limits. An NCCLS-
IFCC joint project. 

 
M29-A3 Protection of Laboratory Workers From Occupationally Acquired Infections; Approved Guideline—

Third Edition (2005). Based on US regulations, this document provides guidance on the risk of transmission 
of infectious agents by aerosols, droplets, blood, and body substances in a laboratory setting; specific 
precautions for preventing the laboratory transmission of microbial infection from laboratory instruments and 
materials; and recommendations for the management of exposure to infectious agents. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                      
∗ CLSI documents are continually reviewed and revised through the CLSI consensus process; therefore, readers should refer to 
the most current editions. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Active Membership 
(As of 1 November 2011) 

 
Sustaining Members 
 
Abbott 
American Association for Clinical 

Chemistry 
AstraZeneca Pharmaceuticals 
Bayer Healthcare, LLC Diagnostic 

Division 
BD 
Beckman Coulter, Inc. 
bioMérieux, Inc. 
College of American Pathologists 
Diagnostica Stago 
GlaxoSmithKline 
National Institute of Standards and 

Technology 
Ortho-Clinical Diagnostics, Inc. 
Pfizer Inc 
Roche Diagnostics, Inc. 
 
Professional Members 
 
AAMI 
American Association for Clinical 

Chemistry 
American Association for Laboratory 

Accreditation 
American Medical Technologists 
American Society for Clinical Laboratory 

Science 
American Society for Clinical Pathology 
American Society for Microbiology 
American Type Culture Collection 
Association of Public Health 

Laboratories 
Associazione Microbiologi Clinici 

Italiani (AMCLI) 
British Society for Antimicrobial 

Chemotherapy 
Canadian Society for Medical Laboratory 

Science 
COLA 
College of American Pathologists 
College of Medical Laboratory 

Technologists of Ontario 
College of Physicians and Surgeons of 

Saskatchewan 
Critical Path Institute 
ESCMID 
Family Health International 
Hong Kong Accreditation Service 

Innovation and Technology 
Commission 

International Federation of Biomedical 
Laboratory Science 

International Federation of Clinical 
Chemistry 

Italian Society of Clin. Biochem. and 
Clin. Molec. Biology 

JCCLS 
National Society for Histotechnology, 

Inc. 
Nova Scotia Association of Clinical 

Laboratory Managers 
Ontario Medical Association Quality 

Management Program-Laboratory 
Service 

RCPA Quality Assurance Programs Pty 
Limited 

SIMeL 
Sociedad Española de Bioquímica 

Clínica y Patología Molec. 
Sociedade Brasileira de Análises Clínicas 
Sociedade Brasileira de Patologia Clínica 
The Joint Commission 
The Korean Society for Laboratory 

Medicine 
World Health Organization 
 
Government Members 
 
Armed Forces Institute of Pathology 
BC Centre for Disease Control 
Canadian Science Center for Human and 

Animal Health 
Centers for Disease Control and 

Prevention 
Centers for Disease Control and 

Prevention - Ethiopia 
Centers for Disease Control and 

Prevention - Namibia 
Centers for Disease Control and 

Prevention - Nigeria 
Centers for Disease Control and 

Prevention - Tanzania 
Centers for Disease Control and 

Prevention - Zambia 
Centers for Medicare & Medicaid 

Services 
Centers for Medicare & Medicaid 

Services/CLIA Program 
Chinese Committee for Clinical 

Laboratory Standards 

Chinese Medical Association (CMA) 
Clalit Health Services 
Department of Veterans Affairs 
DFS/CLIA Certification 
Diagnostic Accreditation Program 
Ethiopian Health and Nutrition Research 

Institute 
FDA Center for Veterinary Medicine 
FDA Ctr. for Devices/Rad. Health 
Health Canada 
Institute of Tropical Medicine Dept. of 

Clinical Sciences  
MA Dept. of Public Health Laboratories 
Malaria Research Training Center 
Marion County Public Health 

Department 
Meuhedet Central Lab 
Ministry of Health and Social Welfare - 

Tanzania 
Mongolian Agency for Standardization 

and Metrology 
Namibia Institute of Pathology 
National Cancer Institute, OBBR, NIH 
National Food Institute Technical 

University of Denmark 
National Health Laboratory Service C/O 

F&M Import & Export Services 
National HIV & Retrovirology Lab 

Public Health Agency of Canada 
National Institute of Health-Maputo, 

Mozambique 
National Institute of Standards and 

Technology 
National Pathology Accreditation 

Advisory Council 
New York State Dept. of Health 
Ontario Agency for Health Protection 

and Promotion 
Pennsylvania Dept. of Health 
SA Pathology 
Saskatchewan Health-Provincial 

Laboratory 
Scientific Institute of Public Health 
State of Alabama 
State of Wyoming Public Health 

Laboratory 
The Nathan S. Kline Institute 
University of Iowa, Hygienic Lab 
US Naval Medical Research Unit #3 
USAMC - AFRIMS 
 
Industry Members 
 
3M Medical Division 
AB Diagnostic Systems GmBH 
Abbott 
Abbott Diabetes Care 
Abbott Point of Care Inc. 
Access Genetics 
Aderans Research 
AdvaMed 
Akonni Biosystems 
Ammirati Regulatory Consulting 
Anapharm, Inc. 
AspenBio Pharma, Inc. 
Astellas Pharma 
AstraZeneca Pharmaceuticals 
Astute Medical, Inc. 
Ativa Medical 
Axis-Shield PoC AS 
Bayer Healthcare, LLC Diagnostic 

Division 
BD 
BD Biosciences - San Jose, CA 
BD Diagnostic Systems 
BD Vacutainer Systems 
Beaufort Advisors, LLC 
Beckman Coulter Cellular Analysis 

Business Center 
Beckman Coulter, Inc. 
Beth Goldstein Consultant 
Bio-Rad Laboratories, Inc. 
Bio-Rad Laboratories, Inc. - France 
Bioanalyse, Ltd. 
Biocartis 
BioDevelopment S.r.l. 
Biohit Oyj. 
Biomedia Laboratories SDN BHD 
bioMérieux, Inc. 
Blaine Healthcare Associates, Inc. 
BRI Consultants Limited 
Calloway Laboratories 
Canon U.S. Life Sciences, Inc. 
CBI Inc. 
Cempra Pharmaceuticals, Inc. 
Cepheid 
Cerilliant Corp. 
Compliance Insight, Inc.  
Constitution Medical Inc 
Controllab 
Copan Diagnostics Inc. 
Crescendo Bioscience 
Cubist Pharmaceuticals, Inc. 

Dahl-Chase Pathology Associates PA 
Diagnostica Stago 
DX Assays Pte Ltd. 
Eiken Chemical Company, Ltd. 
Elanco Animal Health 
Elkin Simson Consulting Services 
Emika Consulting 
EndPoint Associates, LLC 
Enigma Diagnostics 
Eurofins Medinet 
Evidia Biosciences Inc. 
EXACT Sciences Corporation 
Gen-Probe 
Genefluidics 
GlaxoSmithKline 
Greiner Bio-One Inc. 
Himedia Labs Ltd 
HistoGenex N.V. 
Hospital Sungai Buloh 
Icon Laboratories, Inc. 
Innovotech, Inc. 
Instrumentation Laboratory 
Integrated BioBank 
IntelligentMDx, Inc. 
Intuity Medical 
ITC Corp 
Japan Assn. of Clinical Reagents 

Industries 
Johnson & Johnson Pharmaceutical 

Research & Develop., L.L.C. 
Kaiser Permanente 
KoreaBIO 
Krouwer Consulting 
Lab PMM 
Laboratory Specialists, Inc. 
LifeLabs 
LifeScan, Inc. 
Liofilchem SRL 
LipoScience, Inc. 
Maine Standards Company, LLC 
Marketing MicroScan & Molecular 

Korea-Siemens Healthcare 
Masimo Corp. 
Masimo Labs 
Mbio Diagnostics, Inc. 
MDxHealth SA 
Medical Device Consultants, Inc. 
Merck & Company, Inc. 
Merial Limited 
Meso Scale Diagnostics, LLC. 
Micromyx, LLC 
Molecular Response 
Moscow Antidoping Agency 
Nanosphere, Inc. 
Nihon Kohden Corporation  
Nissui Pharmaceutical Co., Ltd. 
NJK & Associates, Inc. 
NorDx - Scarborough Campus 
Nova Biomedical Corporation 
NovaBiotics 
Novartis Institutes for Biomedical 

Research 
Optimer Pharmaceuticals, Inc. 
Ortho-Clinical Diagnostics, Inc. 
Ortho-McNeil, Inc. 
Oxyrase, Inc. 
Paratek Pharmaceuticals, Inc. 
PathCare Pathology Laboratory  
PerkinElmer Genetics, Inc. 
Pfizer Animal Health 
Pfizer Inc 
Pfizer Italia Srl 
Phadia AB 
Philips Healthcare Incubator 
PPD 
ProteoGenix, Inc. 
QML Pathology 
Quotient Bioresearch Ltd. 
R-Biopharm AG 
Radiometer America, Inc. 
Roche Diagnostics GmbH 
Roche Diagnostics, Inc. 
Roche Molecular Systems 
RPL Laboratory Solutions, Inc.  
 DBA RPL Compliance Solutions 
Sanofi Pasteur 
Sarstedt, Inc. 
Sekisui Diagnostics 
Seventh Sense Biosystems 
Siemens Healthcare Diagnostics Inc. 
Siemens Healthcare Diagnostics Products 

GmbH 
Soloy Laboratory Consulting Services, 

Llc 
SomaLogic 
Sphere Medical Holding Limited 
Streck Laboratories, Inc. 
Super Religare Laboratories Ltd 
Sysmex America, Inc. 
Sysmex Corporation - Japan 
Tetraphase Pharmaceuticals 
The Clinical Microbiology Institute 
The Medicines Company 

TheraDoc 
Theranos 
Theravance Inc. 
Thermo Fisher Scientific 
Thermo Fisher Scientific, Oxoid Products 
Thermo Fisher Scientific, Remel 
Transasia Bio-Medicals Limited 
Trek Diagnostic Systems 
Tulip Group 
Ventana Medical Systems Inc. 
Veracyte, Inc. 
Vivacta 
Watson Pharmaceuticals 
Wellstat Diagnostics, LLC 
XDx, Inc. 
 
Associate Active Members 
 
31st Medical Group SGSL (AE) 
3rd Medical Group (AK) 
48th Medical Group/MDSS RAF 

Lakenheath (AE) 
55th Medical Group/SGSAL (NE) 
59th MDW/859th MDTS/MTL Wilford 

Hall Medical Center (TX) 
82 MDG/SGSCL Sheppard AFB (TX) 
Academisch Ziekenhuis-VUB UZ 

Brussel (Belgium) 
ACL Laboratories (IL) 
ACL Laboratories (WI) 
Adams County Hospital (OH) 
Adena Regional Medical Center Hospital 

(OH) 
Affiliated Laboratory, Inc. (ME) 
Akron Children’s Hospital (OH) 
Al Ain Hospital (Abu Dhabi, United 

Arab Emirates) 
Al Hada Armed Forces 

Hospital/TAIF/KSA (Saudi Arabia) 
Al Noor Hospital (United Arab Emirates) 
Al Rahba Hospital (United Arab 

Emirates) 
Alameda County Medical Center (CA) 
Albany Medical Center Hospital (NY) 
Albemarle Hospital (NC) 
Alberta Health Services (AB, Canada) 
Alexandra Hospital (Singapore) 
All Children’s Hospital (FL) 
Allegiance Health (MI) 
Alpena Regional Medical Center (MI) 
Alta Bates Summit Medical Center (CA) 
Alverno Clinical Laboratories, Inc. (IN) 
American Esoteric Laboratories (AEL) 

(TN) 
American University of Beirut Medical 

Center (NJ) 
Anand Diagnostic Laboratory (India) 
Anne Arundel Medical Center (MD) 
Antech Diagnostics (CA) 
Antelope Valley Hospital District (CA) 
Appalachian Regional Healthcare System 

(NC) 
Arkansas Children’s Hospital (AR) 
Arkansas Dept of Health Public Health 

Laboratory (AR) 
Arkansas Methodist Medical Center (AR) 
Arnot Ogden Medical Center Laboratory 

(NY) 
ARUP Laboratories (UT) 
Asan Medical Center (Korea, Republic 

Of) 
Asante Health System (OR) 
Ashley County Medical Center (AR) 
Asiri Group of Hospitals Ltd. (Sri Lanka) 
Aspen Valley Hospital (CO) 
ASPETAR (Qatar Orthopedic and Sports 

Medicine Hospital)  (Qatar) 
Aspirus Wausau Hospital (WI) 
Auburn Regional Medical Center (WA) 
Augusta Health (VA) 
Aultman Hospital (OH) 
Avera McKennan Hospital & University 

Health Center (SD) 
AZ Sint-Jan (Belgium) 
Azienda Ospedale Di Lecco (Italy) 
Baptist Hospital of Miami (FL) 
Baptist Memorial Health Care 

Corporation - Hospital Laboratories 
Works (TN) 

Barnes-Jewish Hospital (MO) 
Bassett Healthcare (NY) 
Baton Rouge General (LA) 
Baxter Regional Medical Center (AR) 
BayCare Health System (FL) 
Baylor Health Care System (TX) 
Bayou Pathology, APMC (LA) 
Baystate Medical Center (MA) 
BC Biomedical Laboratories (BC, 

Canada) 
Beloit Memorial Hospital (WI) 
Berg Diagnostics (MA) 
Beth Israel Medical Center (NY) 
Bio-Reference Laboratories (NJ)

                                                                                          



Blanchard Valley Hospital (OH) 
Bon Secours Health Partners (VA) 
Bonnyville Health Center (AB, Canada) 
Boston Medical Center (MA) 
Boulder Community Hospital (CO) 
Boyce & Bynum Pathology Labs (MO) 
Brant Community Healthcare 

System/Brant General Hospital 
(Ontario, Canada) 

Bremerton Naval Hospital (WA) 
Brian All Good Community Hospital/121 

Combat (AP) 
Bridgeport Hospital (CT) 
Brooke Army Medical Center (TX) 
Broward General Medical Center (FL) 
Cadham Provincial Laboratory-MB 

Health (MB, Canada) 
Calgary Laboratory Services (AB, 

Canada) 
California Pacific Medical Center (CA) 
Cambridge Health Alliance (MA) 
Cape Fear Valley Medical Center 

Laboratory (NC) 
Capital Coast Health (New Zealand) 
Capital Health System Mercer Campus 

(NJ) 
Caritas Norwood Hospital (MA) 
Carl R. Darnall Army Medical Center 

Department of Pathology (TX) 
Carolina Medical Laboratory (NC) 
Carolinas Healthcare System (NC) 
Carpermor S.A. de C.V. (D.F., Mexico) 
Catholic Health Initiatives (KY) 
Cedars-Sinai Medical Center (CA) 
Cenetron Diagnostics (TX) 
Central Baptist Hospital (KY) 
Central Kansas Medical Center (KS) 
Centre Hospitalier Anna-Laberge 

(Quebec, Canada) 
Centre Hospitalier Regional De Trois 

Riveras (PQ, Canada) 
Centro Médico Imbanaco (Colombia) 
Chaleur Regional Hospital (NB, Canada) 
Chang Gung Memorial Hospital 

(Taiwan) 
Changhua Christian Hospital (Taiwan) 
Changi General Hospital (Singapore) 
Chatham - Kent Health Alliance (ON, 

Canada) 
Chesapeake General Hospital (VA) 
Chester County Hospital (PA) 
Children’s Healthcare of Atlanta (GA) 
Childrens Hosp.- Kings Daughters (VA) 
Children’s Hospital & Research Center 

At Oakland (CA) 
Childrens Hospital Los Angeles (CA) 
Children’s Hospital Medical Center (OH) 
Children’s Hospital of Central California 

(CA) 
Children’s Hospital of Orange County 

(CA) 
Children’s Hospital of Philadelphia (PA) 
Childrens Hospital of Wisconsin (WI) 
Children’s Hospitals and Clinics (MN) 
Children’s Medical Center (OH) 
Children’s Medical Center (TX) 
Christiana Care Health Services (DE) 
CHU - Saint Pierre (Belgium) 
CHU Sainte-Justine (Quebec, Canada) 
CHUM Hospital Saint-Luc (Quebec, 

Canada) 
CHW-St. Mary’s Medical Center (CA) 
City of Hope National Medical Center 

(CA) 
Cleveland Clinic (OH) 
Clinica Alemana De Santiago (Chile) 
Clinical and Laboratory Standards 

Institute (PA) 
Clinical Labs of Hawaii (HI) 
College of Physicians and Surgeons of 

Alberta (AB, Canada) 
Collingwood General & Marine Hospital 

(ON, Canada) 
Commonwealth of Kentucky (KY) 
Commonwealth of Virginia (DCLS) 

(VA) 
Community Hospital (IN) 
Community Hospital of the Monterey 

Peninsula (CA) 
Community Medical Center (NJ) 
Community Memorial Hospital (WI) 
Complexe Hospitalier de la Sagamie 

(Quebec, Canada) 
CompuNet Clinical Laboratories Quest 

Diagnostics JV (OH) 
Concord Hospital (NH) 
Consultants Laboratory of WI LLC (WI) 
Contra Costa Regional Medical Center 

(CA) 
Cook Children’s Medical Center (TX) 
Cookeville Regional Medical Center 

(TN) 
Cornwall Community Hospital (ON, 

Canada) 
Covance CLS (IN) 
Covenant Medical Center (TX) 
Creighton Medical Lab (NE) 
Crozer-Chester Medical Center (PA) 

Cumberland Medical Center (TN) 
Darwin Library NT Territory Health 

Services (NT, Australia) 
David Grant Medical Center (CA) 
Daviess Community Hospital (IN) 
Deaconess Hospital Laboratory (IN) 
Dean Medical Center (WI) 
Denver Health & Hospital Authority 

(CO) 
DHHS NC State Lab of Public Health 

(NC) 
DiagnoSearch Life Sciences Inc. 

(Maharashtra, India) 
Diagnostic Laboratory Services, Inc. (HI) 
Diagnostic Services of Manitoba (MB, 

Canada) 
Dimensions Healthcare System Prince 

George’s Hospital Center (MD) 
DMC University Laboratories (MI) 
Drake Center (OH) 
Driscoll Children’s Hospital (TX) 
DUHS Clinical Laboratories Franklin 

Site (NC) 
Dynacare Laboratory (WI) 
Dynacare NW, Inc - Seattle (WA) 
DynaLIFE (AB, Canada) 
E. A. Conway Medical Center (LA) 
East Georgia Regional Medical Center 

(GA) 
East Kootenay Regional Hospital 

Laboratory-Interior Health (BC, 
Canada) 

East Texas Medical Center-Pittsburg 
(TX) 

Eastern Health - Health Sciences Centre 
(NL, Canada) 

Eastern Health Pathology (Victoria, 
Australia) 

Easton Hospital (PA) 
Edward Hospital (IL) 
Effingham Hospital (GA) 
Elmhurst Hospital Center (NY) 
Emory University Hospital (GA) 
Evangelical Community Hospital (PA) 
Evans Army Community Hospital (CO) 
Exeter Hospital (NH) 
Exosome Diagnostics, Inc. (MN) 
Federal Medical Center (MN) 
First Health of the Carolinas Moore 

Regional Hospital (NC) 
Fletcher Allen Health Care (VT) 
Fleury S.A. (Brazil) 
Florida Hospital (FL) 
Fox Chase Cancer Center (PA) 
Fraser Health Authority Royal 

Columbian Hospital Site (BC, Canada) 
Gamma-Dynacare Laboratories (ON, 

Canada) 
Garden City Hospital (MI) 
Garfield Medical Center (CA) 
Gaston Memorial Hospital (NC) 
Geisinger Medical Center (PA) 
Genesis Healthcare System (OH) 
George Washington University Hospital 

(DC) 
Gestión de Calidad (Argentina) 
Gettysburg Hospital (PA) 
Ghent University Hospital (Belgium) 
Good Shepherd Medical Center (TX) 
Grana S.A. (TX) 
Grand Marquis Co., LTD (Taiwan) 
Grand River Hospital (ON, Canada) 
Grand Strand Regional Medical Center 

(SC) 
Grey Bruce Regional Health Center (ON, 

Canada) 
Group Health Cooperative (WA) 
Gundersen Lutheran Medical Center 

(WI) 
Guthrie Clinic Laboratories (PA) 
Hôtel-Dieu de Lévis (PQ, Canada) 
Halton Healthcare Services (ON, Canada) 
Hamad Medical Corporation (Qatar) 
Hamilton Regional Laboratory Medicine 

Program - St. Joseph’s (ON, Canada) 
Hanover General Hospital (PA) 
Harford Memorial Hospital (MD) 
Harris Methodist Fort Worth (TX) 
Harris Methodist Hospital Southwest 

(TX) 
Hartford Hospital (CT) 
Health Network Lab (PA) 
Health Sciences Research Institute 

(Japan) 
Health Waikato (New Zealand) 
Heartland Health (MO) 
Heidelberg Army Hospital (AE) 
Helen Hayes Hospital (NY) 
Helix (Russian Federation) 
Henry Ford Hospital (MI) 
Henry M. Jackson Foundation for the 

Advancement of Military Medicine-
MD (MD) 

Hi-Desert Medical Center (CA) 
Highlands Medical Center (AL) 
HJF Naval Infectious Diseases 

Diagnostic Laboratory (MD) 

Hoag Memorial Hospital Presbyterian 
(CA) 

Hoboken University Medical Center (NJ) 
Holy Cross Hospital (MD) 
Holy Name Hospital (NJ) 
Holy Spirit Hospital (PA) 
Hôpital de la Cité-de-La-Santé De Laval 

(Quebec, Canada) 
Hôpital du Haut-Richelieu (PQ, Canada) 
Hôpital Maisonneuve-Rosemont (PQ, 

Canada) 
Hôpital Santa Cabrini Ospedale (PQ, 

Canada) 
Horizon Health Network (NB, Canada) 
Hospital Albert Einstein (SP, Brazil) 
Hospital Sacre-Coeur de Montreal 

(Quebec, Canada) 
Hôtel-Dieu Grace Hospital Library (ON, 

Canada) 
Hunter Area Pathology Service 

(Australia) 
Hunter Labs (CA) 
Huntington Memorial Hospital (CA) 
Imelda Hospital (Belgium) 
Indian River Memorial Hospital (FL) 
Indiana University Health Bloomington 

Hospital (IN) 
Indiana University Health Care- 

Pathology Laboratory (IN) 
Inova Central Laboratory (VA) 
Institut fur Stand. und Dok. im Med. Lab. 

(Germany) 
Institut National de Santé Publique Du 

Quebec Centre de Doc. - INSPQ (PQ, 
Canada) 

Institute Health Laboratories (PR) 
Institute of Clinical Pathology and 

Medical Research (Australia) 
Institute of Laboratory Medicine 

Landspitali Univ. Hospital (Iceland) 
Institute of Medical & Veterinary 

Science (SA, Australia) 
Intermountain Health Care Lab Services 

(UT) 
International Health Management 

Associates, Inc. (IL) 
Irwin Army Community Hospital (KS) 
Jackson County Memorial Hospital (OK) 
Jackson Memorial Hospital (FL) 
Jackson Purchase Medical Center (KY) 
Jessa Ziekenhuis VZW (Belgium) 
John C. Lincoln Hospital - N.MT. (AZ) 
John F. Kennedy Medical Center (NJ) 
John H. Stroger, Jr. Hospital of Cook 

County (IL) 
John Muir Health (CA) 
John T. Mather Memorial Hospital (NY) 
Johns Hopkins Medical Institutions (MD) 
Johns Hopkins University (MD) 
Johnson City Medical Center Hospital 

(TN) 
JPS Health Network (TX) 
Kailos Genetics (AL) 
Kaiser Permanente (MD) 
Kaiser Permanente Medical Care (CA) 
Kenora-Rainy River Reg. Lab. Program 

(ON, Canada) 
King Abdulaziz Hospital, Al Ahsa Dept. 

of Pathology & Laboratory Medicine  
(Al-hasa, Saudi Arabia) 

King Fahad National Guard Hospital 
KAMC - NGHA (Saudi Arabia) 

King Fahad Specialist Hospital-
Dammam, K.S.A. (Eastern Region, 
Saudi Arabia) 

King Faisal Specialist Hospital & 
Research Center (Saudi Arabia) 

King Hussein Cancer Center (Jordan) 
Kingston General Hospital (ON, Canada) 
Laboratória Médico Santa Luzia Ltda 

(Brazil) 
Laboratory Alliance of Central New 

York (NY) 
Laboratory Corporation of America (NJ) 
Laboratory Medicin Dalarna (Dalarna, 

Sweden) 
LabPlus Auckland District Health Board 

(New Zealand) 
LAC/USC Medical Center (CA) 
Lafayette General Medical Center (LA) 
Lakeland Regional Medical Center (FL) 
Lancaster General Hospital (PA) 
Landstuhl Regional Medical Center 

(Germany) 
Langley Air Force Base (VA) 
LeBonheur Children’s Hospital (TN) 
Legacy Laboratory Services (OR) 
Letherbridge Regional Hospital (AB, 

Canada) 
Lewis-Gale Medical Center (VA) 
Lexington Medical Center (SC) 
L’Hotel-Dieu de Québec (PQ, Canada) 
Licking Memorial Hospital (OH) 
LifeBridge Health Sinai Hospital (MD) 
LifeLabs Medical Laboratory Services 

(BC, Canada) 
Lifeline Hospital (United Arab Emirates) 

Loma Linda University Medical Center 
(LLUMC) (CA) 

Long Beach Memorial Medical Center-
LBMMC (CA) 

Long Island Jewish Medical Center (NY) 
Louisiana Office of Public Health 

Laboratory (LA) 
Louisiana State University Medical Ctr. 

(LA) 
Lower Columbia Pathologists, P.S. (WA) 
Lower Mainland Laboratories (BC, 

Canada) 
Lyndon B. Johnson General Hospital 

(TX) 
Maccabi Medical Care and Health Fund 

(Israel) 
Mafraq Hospital (United Arab Emirates) 
Magnolia Regional Health Center (MS) 
Main Line Clinical Laboratories, Inc. 

Lankenau Hospital (PA) 
Makerere University Walter Reed Project 

Makerere University Medical School 
(Uganda) 

Marquette General Hospital (MI) 
Marshfield Clinic (WI) 
Martha Jefferson Hospital (VA) 
Martin Luther King, Jr./Drew Medical 

Center  (CA) 
Martin Memorial Health Systems (FL) 
Mary Hitchcock Memorial Hospital (NH) 
Mary Washington Hospital (VA) 
Mater Health Services - Pathology 

(Australia) 
Maxwell Air Force Base (AL) 
Mayo Clinic (MN) 
MCG Health (GA) 
Meadows Regional Medical Center (GA) 
Medical Center Hospital (TX) 
Medical Center of Louisiana At NO-

Charity (LA) 
Medical Centre Ljubljana (Slovenia) 
Medical College of Virginia Hospital 

(VA) 
Medical University of South Carolina 

(SC) 
Memorial Hermann Healthcare System  

(TX) 
Memorial Medical Center (PA) 
Memorial Medical Center (IL) 
Memorial Regional Hospital (FL) 
Mercy Franciscan Mt. Airy (OH) 
Mercy Hospital & Medical Center (IL) 
Methodist Dallas Medical Center (TX) 
Methodist Hospital (TX) 
Methodist Hospital Park Nicollet Health 

Services (MN) 
Methodist Hospital Pathology (NE) 
MetroHealth Medical Center (OH) 
Metropolitan Hospital Center (NY) 
Metropolitan Medical Laboratory, PLC 

(IA) 
Miami Children’s Hospital (FL) 
Mid Michigan Medical Center - Midland 

(MI) 
Middelheim General Hospital (Belgium) 
Middlesex Hospital (CT) 
Mike O’Callaghan Federal Hospital (NV) 
Minneapolis Medical Research 

Foundation (MN) 
Mississippi Baptist Medical Center (MS) 
Mississippi Public Health Lab (MS) 
Monongalia General Hospital (WV) 
Montreal General Hospital (Quebec, 

Canada) 
Morehead Memorial Hospital (NC) 
Mouwasat Hospital (GA, Saudi Arabia) 
Mt. Carmel Health System (OH) 
Mt. Sinai Hospital (ON, Canada) 
Mt. Sinai Hospital - New York (NY) 
Naples Community Hospital (FL) 
Nassau County Medical Center (NY) 
National B Virus Resource Laboratory 

(GA) 
National Cancer Center (Korea, Republic 

Of) 
National Institutes of Health, Clinical 

Center (MD) 
National Naval Medical Center (MD) 
National University Hospital Department 

of Laboratory Medicine (Singapore) 
National University of Ireland, Galway 

(NUIG) (Ireland) 
Nationwide Children’s Hospital (OH) 
Naval Hospital Oak Harbor (WA) 
Naval Medical Center Portsmouth (VA) 
Naval Medical Clinic Hawaii (HI) 
NB Department of Health (NB, Canada) 
New England Baptist Hospital (MA) 
New England Sinai Hospital (MA) 
New Lexington Clinic (KY) 
New York City Department of Health 

and Mental Hygiene (NY) 
New York Presbyterian Hospital (NY) 
New York University Medical Center 

(NY) 
Newark Beth Israel Medical Center (NJ) 
Newfoundland Public Health Laboratory 

(NL, Canada)
                                                                                          



North Carolina Baptist Hospital (NC) 
North District Hospital (China) 
North Mississippi Medical Center (MS) 
North Shore Hospital Laboratory (New 

Zealand) 
North Shore-Long Island Jewish Health 

System Laboratories (NY) 
Northridge Hospital Medical Center (CA) 
Northside Hospital (GA) 
Northside Medical Center (OH) 
Northwest Texas Hospital (TX) 
Northwestern Memorial Hospital (IL) 
Norton Healthcare (KY) 
Ochsner Clinic Foundation (LA) 
Ohio State University Hospitals (OH) 
Ohio Valley Medical Center (WV) 
Onze Lieve Vrouwziekenhuis (Belgium) 
Ordre Professionnel Des Technologistes 

Médicaux Du Quebec (Quebec, 
Canada) 

Orebro University Hospital (Sweden) 
Orlando Health (FL) 
Ospedale Casa Sollievo Della Sofferenza 

- IRCCS (Italy) 
Our Lady’s Hospital For Sick Children 

(Ireland) 
Palmetto Baptist Medical Center (SC) 
Pamela Youde Nethersole Eastern 

Hospital (Hong Kong East Cluster) 
(Hong Kong) 

Pathgroup (TN) 
Pathlab (IA) 
Pathology and Cytology Laboratories, 

Inc. (KY) 
Pathology Associates Medical Lab. (WA) 
Pathology Inc. (CA) 
Penn State Hershey Medical Center (PA) 
Pennsylvania Hospital (PA) 
Peterborough Regional Health Centre 

(ON, Canada) 
PHS Indian Hospital - Pine Ridge (SD) 
Piedmont Hospital (GA) 
Pitt County Memorial Hospital (NC) 
Potomac Hospital (VA) 
Prairie Lakes Hospital (SD) 
Presbyterian Hospital - Laboratory (NC) 
Presbyterian/St. Luke’s Medical Center 

(CO) 
Prince of Wales Hospital (Hong Kong) 
Princess Margaret Hospital (Hong Kong, 

China) 
Providence Alaska Medical Center (AK) 
Providence Health Services, Regional 

Laboratory (OR) 
Provincial Laboratory for Public Health 

(AB, Canada) 
Queen Elizabeth Hospital (P.E.I, Canada) 
Queen Elizabeth Hospital (China) 
Queensland Health Pathology Services 

(Australia) 
Queensway Carleton Hospital (ON, 

Canada) 
Quest Diagnostics, Incorporated (CA) 
Quintiles Laboratories, Ltd. (GA) 
Rady Children’s Hospital San Diego 

(CA) 
Ramathibodi Hospital (Thailand) 
Redington-Fairview General Hospital 

(ME) 
Regions Hospital (MN) 
Reid Hospital & Health Care Services 

(IN) 
Reinier De Graaf Groep (Netherlands) 
Renown Regional Medical Center (NV) 
Research Medical Center (MO) 
Response Genetics, Inc. (CA) 
RIPAS Hospital (Brunei-Maura, Brunei 

Darussalam) 
Riverside County Regional Medical 

Center (CA) 
Riverside Health System (VA) 
Riverside Methodist Hospital (OH) 
Riyadh Armed Forces Hospital, 

Sulaymainia (Saudi Arabia) 
Rockford Memorial Hospital (IL) 
Royal Victoria Hospital (ON, Canada) 
SAAD Specialist Hospital (Saudi Arabia) 

Sacred Heart Hospital (WI) 
Sacred Heart Hospital (FL) 
Sahlgrenska Universitetssjukhuset 

(Sweden) 
Saint Francis Hospital & Medical Center 

(CT) 
Saint Mary’s Regional Medical Center 

(NV) 
Saints Memorial Medical Center (MA) 
Salem Memorial District Hospital (MO) 
Sampson Regional Medical Center (NC) 
Samsung Medical Center (Korea, 

Republic Of) 
San Francisco General Hospital-

University of California San Francisco 
(CA) 

Sanford USD Medical Center (SD) 
Santa Clara Valley Medical Center (CA) 
SARL Laboratoire Caron (France) 
Scott & White Memorial Hospital (TX) 
Seattle Children’s Hospital/Children’s 

Hospital and Regional Medical Center 
(WA) 

Sebastian River Medical Center (FL) 
Seoul National University Hospital 

(Korea, Republic Of) 
Seoul St. Mary’s Hospital (Korea, 

Republic Of) 
Seton Healthcare Network (TX) 
Seton Medical Center (CA) 
Sharp Health Care Laboratory Services 

(CA) 
Sheik Kalifa Medical City (United Arab 

Emirates) 
Shore Memorial Hospital (NJ) 
Singapore General Hospital (Singapore) 
South Bend Medical Foundation (IN) 
South Eastern Area Laboratory Services 

(NSW, Australia) 
South Miami Hospital (FL) 
Southern Community Laboratories 

(Canterbury, New Zealand) 
Southern Health Care Network 

(Australia) 
Southwest Healthcare System (CA) 
Southwestern Medical Center (OK) 
Spectra East (NJ) 
Spectra Laboratories (CA) 
St. Agnes Healthcare (MD) 
St. Anthony Hospital (OK) 
St. Barnabas Medical Center (NJ) 
St. Elizabeth Community Hospital (CA) 
St. Eustache Hospital (Quebec, Canada) 
St. Francis Hospital (SC) 
St. Francis Memorial Hospital (CA) 
St. John Hospital and Medical Center 

(MI) 
St. John’s Episcopal Hospital (NY) 
St. John’s Hospital & Health Center (CA) 
St. John’s Mercy Medical Center (MO) 
St. John’s Regional Health Center (MO) 
St. Jude Children’s Research Hospital 

(TN) 
St. Luke’s Hospital (IA) 
St. Luke’s Hospital (PA) 
St. Mary Medical Center (CA) 
St. Mary’s Hospital (WI) 
St. Michael’s Medical Center, Inc. (NJ) 
St. Tammany Parish Hospital (LA) 
Stanford Hospital and Clinics (CA) 
Stanton Territorial Health Authority (NT, 

Canada) 
State of Connecticut Department of 

Public Health (CT) 
State of Ohio/Corrections Medical Center 

Laboratory (OH) 
State of Washington Public Health Labs 

(WA) 
Stillwater Medical Center (OK) 
Stony Brook University Hospital (NY) 
Stormont-Vail Regional Medical Ctr. 

(KS) 
Strong Memorial Hospital (NY) 
Sudbury Regional Hospital (ON, Canada) 
Sunnybrook Health Sciences Centre (ON, 

Canada) 
Sunrise Hospital and Medical Center 

(NV) 

Swedish Edmonds Hospital (WA) 
Swedish Medical Center (CO) 
Sydney South West Pathology Service 

Liverpool Hospital (NSW, Australia) 
T.J. Samson Community Hospital (KY) 
Taichung Veterans General Hospital 

(Taiwan) 
Taiwan Society of Laboratory Medicine 

(Taiwan) 
Tallaght Hospital (Ireland) 
Tartu University Clinics (Estonia) 
Temple Univ. Hospital - Parkinson Pav. 

(PA) 
Tenet Healthcare (PA) 
Texas Children’s Hospital (TX) 
Texas Department of State Health 

Services (TX) 
Texas Health Presbyterian Hospital 

Dallas (TX) 
The Brooklyn Hospital Center (NY) 
The Charlotte Hungerford Hospital (CT) 
The Children’s Mercy Hospital (MO) 
The Cooley Dickinson Hospital, Inc. 

(MA) 
The Credit Valley Hospital (ON, Canada) 
The Hospital for Sick Children (ON, 

Canada) 
The Medical Center of Aurora (CO) 
The Michener Inst. for Applied Health 

Sciences (ON, Canada) 
The Naval Hospital of Jacksonville (FL) 
The Nebraska Medical Center (NE) 
The Ottawa Hospital (ON, Canada) 
The Permanente Medical Group (CA) 
The Toledo Hospital (OH) 
The University of Texas Medical Branch 

(TX) 
Thomas Jefferson University Hospital, 

Inc. (PA) 
Timmins and District Hospital (ON, 

Canada) 
Tokyo Metro. Res. Lab of Public Health 

(Japan) 
Touro Infirmary (LA) 
TriCore Reference Laboratories (NM) 
Trident Medical Center (SC) 
Trinity Medical Center (AL) 
Tripler Army Medical Center (HI) 
Tuen Mun Hospital, Hospital Authority 

(China) 
Tufts Medical Center Hospital (MA) 
Tulane Medical Center Hospital & Clinic 

(LA) 
Turku University Central Hospital 

(Finland) 
Twin Lakes Regional Medical Center 

(KY) 
UCI Medical Center (CA) 
UCLA Medical Center Clinical 

Laboratories (CA) 
UCSD Medical Center (CA) 
UCSF Medical Center China Basin (CA) 
UMC of El Paso- Laboratory (TX) 
UMC of Southern Nevada (NV) 
UNC Hospitals (NC) 
Unidad de Patología Clínica (Mexico) 
Union Clinical Laboratory (Taiwan) 
United Christian Hospital (Kowloon, 

Hong Kong) 
United States Air Force School of 

Aerospace Medicine / PHE (TX) 
Unity HealthCare (IA) 
Universitair Ziekenhuis Antwerpen 

(Belgium) 
University College Hospital (Ireland) 
University Hospital (GA) 
University Hospital Center Sherbrooke 

(CHUS) (Quebec, Canada) 
University Medical Center at Princeton 

(NJ) 
University of Alabama Hospital Lab 

(AL) 
University of Chicago Hospitals 

Laboratories (IL) 
University of Colorado Health Sciences 

Center (CO) 
University of Colorado Hospital (CO) 

University of Illinois Medical Center (IL) 
University of Iowa Hospitals and Clinics 

(IA) 
University of Kentucky Medical Center 

(KY) 
University of Maryland Medical System 

(MD) 
University of Minnesota Medical Center-

Fairview (MN) 
University of Missouri Hospital (MO) 
University of Pennsylvania Health 

System (PA) 
University of Pittsburgh Medical Center 

(PA) 
University of Texas Health Center (TX) 
University of the Ryukyus (Japan) 
University of Virginia Medical Center 

(VA) 
UPMC Bedford Memorial (PA) 
US Naval Hospital Naples ( ) 
UZ-KUL Medical Center (Belgium) 
VA (Asheville) Medical Center (NC) 
VA (Bay Pines) Medical Center (FL) 
VA (Central Texas) Veterans Health Care 

System (TX) 
VA (Chillicothe) Medical Center (OH) 
VA (Cincinnati) Medical Center (OH) 
VA (Dallas) Medical Center (TX) 
VA (Dayton) Medical Center (OH) 
VA (Indianapolis) Medical Center (IN) 
VA (Iowa City) Medical Center (IA) 
VA (Miami) Medical Center (FL) 
VA (San Diego) Medical Center (CA) 
VA (Tampa) Hospital (FL) 
VA (Wilmington) Medical Center (DE) 
Valley Health / Winchester Medical 

Center (VA) 
Vancouver Island Health Authority (SI) 

(BC, Canada) 
Vanderbilt University Medical Center 

(TN) 
Verinata Health, Inc. (CA) 
Via Christi Regional Medical Center 

(KS) 
Viracor-IBT Reference Laboratory (MO) 
Virginia Regional Medical Center (MN) 
Virtua - West Jersey Hospital (NJ) 
WakeMed (NC) 
Walter Reed Army Medical Center (DC) 
Warren Hospital (NJ) 
Washington Hospital Center (DC) 
Washington Hospital Healthcare System 

(CA) 
Waterbury Hospital (CT) 
Waterford Regional Hospital (Ireland) 
Wayne Memorial Hospital (NC) 
Weirton Medical Center (WV) 
West China Second University Hospital, 

Sichuan University (China) 
West Jefferson Medical Center (LA) 
West Penn Allegheny Health System-

Allegheny General Hospital (PA) 
West Shore Medical Center (MI) 
West Valley Medical Center Laboratory 

(ID) 
Westchester Medical Center (NY) 
Western Baptist Hospital (KY) 
Western Healthcare Corporation (NL, 

Canada) 
Wheaton Franciscan Laboratories (WI) 
Wheeling Hospital (WV) 
White Memorial Medical Center (CA) 
Whitehorse General Hospital (YT, 

Canada) 
William Beaumont Army Medical Center 

(TX) 
William Beaumont Hospital (MI) 
William Osler Health Centre (ON, 

Canada) 
Winchester Hospital (MA) 
Winn Army Community Hospital (GA) 
Wishard Health Sciences (IN) 
Womack Army Medical Center 

Department of Pathology (NC) 
York Hospital (PA) 
Yukon-Kuskokwim Delta Regional 

Hospital (AK) 
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www.clsi.org today.

Explore the Latest 
Offerings from CLSI!

Where we provide the convenient 
and cost-effective education 
resources that laboratories 
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workshops, and more. 
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See the options that make it even 
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The Clinical and Laboratory Standards Institute 
(CLSI) is a not-for-profit membership organization 
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expertise of the worldwide laboratory community 
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excellence in laboratory medicine by developing 
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Join in Our Mission to Improve 
Health Care Outcomes
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New Membership 
Opportunities
More Options. More Benefits. More Value.

We’ve made it even easier for your organization to take 
full advantage of the standards resources and networking 
opportunities available through membership with CLSI.

As we continue to set the global standard 
for quality in laboratory testing, we’re 
adding initiatives to bring even more 
value to our members and customers.

Including eCLIPSE Ultimate 
Access™, CLSI’s cloud-based, 
online portal that makes it easy 
to access our standards and 
guidelines—anytime, anywhere.

Shop Our Online 
Products
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Power Forward 
with this Official 
Interactive Guide

Fundamentals for implementing 
a quality management system 
in the clinical laboratory.  
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